首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important question in evolutionary biology is how often, and to what extent, do similar ecologies elicit distantly related taxa to evolve towards the same phenotype? In some scenarios, the repeated evolution of particular phenotypes may be expected, for instance when species are exposed to common selective forces that result from strong functional demands. In bivalved scallops (Pectinidae), some species exhibit a distinct swimming behaviour (gliding), which requires specific biomechanical attributes to generate lift and reduce drag during locomotive events. Further, a phylogenetic analysis revealed that gliding behaviour has independently evolved at least four times, which raises the question as to whether these independent lineages have also converged on a similar phenotype. Here, we test the hypothesis that gliding scallops display shell shape convergence using a combination of geometric morphometrics and phylogenetic comparative methods that evaluate patterns of multivariate trait evolution. Our findings reveal that the gliding species display less morphological disparity and significant evolutionary convergence in morphospace, relative to expectations under a neutral model of Brownian motion for evolutionary phenotypic change. Intriguingly, the phylomorphospace patterns indicate that gliding lineages follow similar evolutionary trajectories to not one, but two regions of morphological space, and subsequent analyses identified significant differences in their biomechanical parameters, suggesting that these two groups of scallops accomplish gliding in different ways. Thus, whereas there is a clear gliding morphotype that has evolved convergently across the phylogeny, functionally distinct morphological subforms are apparent, suggesting that there may be two optima for the gliding phenotype in the Pectinidae.  相似文献   

2.
Morphological convergence is a central concept in evolutionary biology, but convergent patterns remain under‐studied in nonvertebrate organisms. Some scallop species exhibit long‐distance swimming, a behaviour whose biomechanical requirements probably generate similar selective regimes. We tested the hypothesis that shell shape similarity in long‐distance swimming species is a result of convergent evolution. Using landmark‐based geometric morphometrics, we quantified shell shape in seven species representing major behavioural habits. All species displayed distinct shell shapes, with the exception of the two long‐distance swimmers, whose shells were indistinguishable. These species also displayed reduced morphological variance relative to other taxa. Finally, a phylogenetic simulation revealed that these species were more similar in their shell shape than was expected under Brownian motion, the model of character evolution that best described changes in shell shape. Together, these findings reveal that convergent evolution of shell shape occurs in scallops, and suggest that selection for shell shape and behaviour may be important in the diversification of the group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 571–584.  相似文献   

3.
4.
The development and evolution of the rodent mandible have been studied in depth in recent years. The mandible is a complex structure because it consists of six morphogenetic components formed by different condensations of mesenchymal cells. Using recent techniques for the geometric analysis of shape, we have combined developmental information with a powerful quantification of shape variation and an independent estimate of phylogeny (molecular data) to assess the evolutionary patterns of shape change in mandibles of the rodent genus Trinomys . In general, the major trends in shape variation did not agree with the expected phylogenetic pattern. However, for small-scale morphological differences, one species ( T. yonenagae ) was responsible for the lack of association between morphology and molecular divergence. This species is genetically similar to but morphologically different from other Trinomys . The coronoid process was considered to be the most conservative morphogenetic component in the mandible.  相似文献   

5.
Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many‐to‐many relationships between ecology and function, many‐to‐one relationships between form and performance, and one‐to‐many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes.  相似文献   

6.
7.
Although some external coloration and pigmentation patterns in molluscan shells may be attributable to environmental factors, most variation in these phenotypic characters depends on uncomplicated genetic mechanisms. Genetic research on inheritance of color variations in the north-Chilean scallop (Argopecten purpuratus) has now been expanded to analyze color segregation in juvenile scallops produced under controlled conditions employing self- and cross-fertilization. Calculations from the results were used for comparison with different numerical models based on Mendelian inheritance, and results were also obtained on the inheritance of a dorsoventral white line often observed on the left (upper) valve in this species. The results confirmed the hereditary basis for color variation in the shell of this scallop, suggesting a simple, dominant model of epistasis to explain the distribution of the different color variants observed (purple, brown, orange, yellow, and white). The presence of the white line may be controlled by a recessive allele with simple Mendelian traits on a locus distinct from those that control color variation.  相似文献   

8.
9.
The Ceprano calvarium represents one of the most important sources of information about both the dynamics of the earliest hominid dispersal toward Europe and the evolution of the genus Homo in the early-to-middle Pleistocene. In this paper, the midsagittal vault profile and the 3D frontal bone morphology of Ceprano are investigated comparatively, using landmark coordinates and Procrustes superimposition. In fact, despite the fact that the skull appears partially distorted by diagenetic pressures (thus precluding a comprehensive landmark-based analysis), some aspects of the overall morphology are suitable for consideration in terms of geometric morphometrics. The midsagittal profile shows an archaic shape, comparable with the H. ergaster/erectus range of variation because of the fronto-parietal flattening, the development of the supraorbital and nuchal structures, and the occurrence of a slightly larger occipital bone. By contrast, the frontal bone displays a derived 3D shape that, mostly because of the widening of the frontal squama, appears comparable with the Afro-European variation of the Middle Pleistocene (i.e., H. heidelbergensis/rhodesiensis). Taking into account the unique morphological pattern displayed by Ceprano, its role as a link between early Homo and the Middle Pleistocene populations of Europe and Africa is not falsified. Thus, when aspects of the Ceprano's morphology are described within the analytical framework provided by geometric morphometrics, the relationships between Ceprano and the subsequent Afro-European fossil record are emphasized, suggesting the occurrence of an ancestral stock of H. heidelbergensis/rhodesiensis that is properly represented by the Italian specimen.  相似文献   

10.
Allometry constitutes an important source of morphological variation. However, its influence in head development in anurans has been poorly explored. By using geometric morphometrics followed by statistical and comparative methods we analyzed patterns of allometric change during cranial postmetamorphic ontogeny in species of Nest‐building frogs Leptodactylus (Leptodactylidae). We found that the anuran skull is not a static structure, and allometry plays an important role in defining its shape in this group. Similar to other groups with biphasic life‐cycle, and following a general trend in vertebrates, ontogenetic changes mostly involve rearrangement in rostral, otoccipital, and suspensorium regions. Ontogenetic transformations are paralleled by shape changes associated with evolutionary change in size, such that the skulls of species of different intrageneric groups are scaled to each other, and small and large species show patterns of paedomorphic/peramorphic features, respectively. Allometric trajectories producing those phenotypes are highly evolvable though, with shape change direction and magnitude varying widely among clades, and irrespective of changes in absolute body size. These results reinforce the importance of large‐scale comparisons of growth patterns to understand the plasticity, evolution, and polarity of morphological changes in different clades.  相似文献   

11.
We explored the macroevolutionary dynamics of miniaturisation in New World anchovies by integrating a time-calibrated phylogeny, geometric morphometrics and phylogenetic comparative methods. We found that the paedomorphic species Amazonsprattus scintilla occupies a novel region of shape space, while the dwarf species Anchoviella manamensis has an overall shape consistent with other anchovies. We found that miniaturisation did not increase overall clade disparity in size or shape beyond the expectations of Brownian motion, nor were there differences in rates of size or shape evolution among clades. Overall, our study shows that while the mode of miniaturisation influences shape evolution, the phenotypic novelty produced by the evolution of miniaturisation did not seem to alter macroevolutionary dynamics.  相似文献   

12.
Grass leaf shape is a strong indicator of their habitat with linear leaves predominating in open areas and ovate leaves distinguishing forest‐associated grasses. This pattern among extant species suggests that ancestral shifts between forest and open habitats may have coincided with changes in leaf shape or size. We tested relationships between habitat, climate, photosynthetic pathway, and leaf shape and size in a phylogenetic framework to evaluate drivers of leaf shape and size variation over the evolutionary history of the family. We also estimated the ancestral habitat of Poaceae and tested whether forest margins served as transitional zones for shifts between forests and grasslands. We found that grass leaf shape is converging toward different shape optima in the forest understory, forest margins, and open habitats. Leaf size also varies with habitat. Grasses have smaller leaves in open and drier areas, and in areas with high solar irradiance. Direct transitions between linear and ovate leaves are rare as are direct shifts between forest and open habitats. The most likely ancestral habitat of the family was the forest understory and forest margins along with an intermediate leaf shape served as important transitional habitat and morphology, respectively, for subsequent shifts across forest–grassland biome boundaries.  相似文献   

13.
Phenotypic variation in the shape of the first upper molar among 595 mice, representing nine extant and three extinct taxa of the genus Mus , was studied with thin-plate spline analysis. The reliability of classification of individual specimens into known groups based on their molars varied from 75 to 100%, depending on group and method used. Including 13 sliding semilandmarks to the analysis improved the detection of different kinds of size and shape variation as well as visualization of shape differences between studied groups. Correlation between phylogenetic and morphometric distances suggested about 80% contribution of phylogenetic inertia to the molar shape variation; moreover, the importance of localized versus global shape changes was similar in the detection of phylogenetic signals. Finally, shape changes along individual evolutionary lineages were revealed, suggesting a few cases of reversals, convergence and/or retention of ancestral shape. The evolution of mouse molars has thus been driven by random effects of drift together with stabilizing selection and convergence.  相似文献   

14.
15.
A new and phylogenetically basal species of Carpolestes, the youngest and most derived genus of the plesiadapoid family Carpolestidae in North America, is described from a late Tiffanian (Ti-5) site in Sweetwater County, Wyoming, USA. Carpolestids differ from closely related plesiadapoid clades in having an enlarged, multicuspidate, blade-like P4 that is partly convergent on that of multituberculates and other mammals showing plagiaulacoid dental adaptations. With some notable exceptions, the evolutionary history of North American carpolestids is characterized by the progressive development of larger and more elaborate P4 blades through time. In particular, species of the monophyletic genus Carpolestes differ from species assigned to the earlier and apparently paraphyletic genus Carpodaptes in terms of both the size and shape of their P4. A geometric morphometric analysis reveals that, with respect to P4 shape, the closest approximation to the highly derived morphology of Carpolestes is made by Carpodaptes hobackensis, which is one of the smallest known species of Carpodaptes. In contrast, the largest known species of Carpodaptes, Carpodaptes jepseni, has a P4 that falls within the metric range of variation for species of Carpolestes, yet Carpodaptes jepseni shows a uniquely derived P4 shape that seems to exclude it from any special phylogenetic relationship with Carpolestes. A phylogenetic analysis based on dental characters reconstructs Carpodaptes hobackensis as the sister group of the Carpolestes clade. Shape seems to have been a more important factor than size during the final transformation of the blade-like P4 of North American carpolestids.

http://zoobank.org/urn:lsid:zoobank.org:pub:212F9ECC-DA9A-44F8-BE7E-43F3EBAD636A  相似文献   


16.
Most research on bivalves from the south-western Atlantic used morphological (shell) characters for taxonomic discriminations. Dominant Veneroids from Argentinian Quaternary coastal deposits exhibit wide morphological variation – often making objective discriminations difficult/impossible, which could be objectively described and compared through geometric morphometrics techniques. This work focuses on comparison of geometric morphometrics methods applied to fossil and modern shells, to assess inter- and intra-generic variations. Three approaches were considered: landmarks (L), semi-landmarks (SL) and outlines. Shell shape analyses for different time spans (Pleistocene, fossil Holocene and modern) and areas (Patagonia and Bonaerensian) showed that Elliptic Fourier analysis (EFA), Landmarks and Landmarks plus Semilandmarks (L+SL) can discriminate at generic levels: Mactra, Mulinia (Mactridae) vs. Pitar, Protothaca, Eurhomalea, Clausinella (Veneridae). L and L+SL are powerful for inter/intraspecific distinctions of Mactra. Variability of Mactra isabelleana includes the remaining nominal ‘species’ (transitional morphs). Causal environmental factors of (phenotype) variation could be addressed for modern environments (substrate, salinity and energy). Subtrigonal-inflated shells predominate in muddy, quieter, shallow mixo-polyhaline waters; ovate-elongate-compressed in sandy, poly-euhaline, deeper habitats. Differential spatial distribution (and abundance) across time responds to Late Quaternary high sea-level stands: transgressive maxima allowed higher salinity in marginal-marine areas and optimal conditions for Mactra isabelleana contrasting with scarcer records in the Mar Argentino today.  相似文献   

17.
The commercially fished striped venus clams Chamelea gallina and C. striatula (Bivalvia: Veneridae) are difficult to distinguish by inexperienced observers and the taxonomy of these species is still an issue of discussion. The differences in shape between C. gallina and C. striatula from Portuguese coastal waters were studied through conventional linear and geometric morphometric analysis, using both contour (elliptic Fourier analysis) and landmark-based methods. The relationships shell length vs. height, width, and total weight were significantly different between species. However, because there was a considerable overlap in the data sets, the species could not be distinguished using any combination of those linear measurements. Geometric morphometric methods provided shape variables that led to 0-6% misclassification rates between species; linear morphometric measures led to 16.8% error. Contour analysis revealed differences primarily in the shell umbo and lunular area. The umbo was more "sharp" and the lunula less pronounced in C. striatula than in C. gallina. Generalized procrustes superimposition (landmark analysis) showed that the main differences between species reside in the length of the pallial sinus. Thus, an index was developed (PI: Pallial Index = pallial sinus length/shell length), which was successfully used to separate the species (with 100% correct classification), i.e., specimens with PI lower than 0.119 belonged to C. gallina, whereas greater PI values were attributed to C. striatula. The use of these geometric morphometric methods allowed the detection of differences in shape between these two species and to develop an easy-to-use identification index. We encourage the development of analogous indices that apply the methods of geometric morphometrics to distinguish between other species whose identification is complicated.  相似文献   

18.
The karyotype of Nodipecten nodosus (Bivalvia: Pectinidae)   总被引:1,自引:0,他引:1  
Pauls  E.  Affonso  P. R. A. M. 《Hydrobiologia》2000,420(1):99-102
Earlier karyotypical work on Nodipecten nodosus embryos indicated that this species has a diploid number of 38, with six pairs respectively of metacentric and submetacentric chromosomes and seven pairs of subtelocentric chromosomes, although there were some difficulties in obtaining complete metaphases. The present work provides additional results on specific regions of the chromosomes in N. nodosus and, by meiotic studies, confirms the chromosome number with more reliability. Active nucleolar organizer regions (NOR), detected in mitotic metaphases from embryos, can be characterized in N. nodosus by a high level of heteromorphism of NOR-sites, indicating that these regions are not appropriate as chromosomal markers in this species. The procedure for detecting constitutive heterochromatin of chromosomes allowed us to observe most of the heterochromatic blocks at a pericentromeric position and some at telomeric and interstitial positions. The analysis of meiotic chromosomes from gonad tissue revealed the presence of 19 bivalents during metaphase I, all homomorphic and isopicnotic, confirming the previously described diploid chromosomal number of 38 for N. nodosus. From these results, some evolutionary aspects of the Pectinidae are briefly discussed.  相似文献   

19.
Marmots are the largest ground squirrels and have been extensively studied by sociobiologists investigating the evolution of mammal societies. Being a member of the sciurid clade, traditionally considered inclined to convergence, they are also a group on which to test the hypothesis of sciurid propensity to homoplasy of osteological characters. In the present analysis, the dorsal and lateral surfaces of the cranium of all living marmot species are compared with geometric morphometric techniques. Phenetic groups are found which reflect the subgeneric classification of marmots and are consistent with previous morphometric analyses of the mandible and ventral cranium. Two species have distinctive morphologies and phenetic relationships not congruent with phylogeny. Marmota vancouverensis is highly divergent for osteological characters, fur colour and behaviour despite its young age and close genetic similarity to Marmota caligata . Its small population may represent a rare chance to study evolutionary processes during rapid allopatric speciation in mammals, but strong conservation efforts are required to preserve this unique component of the Vancouver Island biodiversity. Also, Marmota monax has distinctive cranial traits. These are possibly related to its long separate evolutionary history and unique ecology and behaviour. Size-related convergence is not evident in Marmota . When outgroup species are included, Spermophilus , Cynomys , Tamias , and Sciurus group together on one branch, Marmota on the other. This is best explained as a retention of the ancestral morphology in the smaller members of the Marmotini ( Spermophilus , Cynomys , and Tamias ) and the evolution of derived morphology in Marmota .  相似文献   

20.
Leaves can be a useful source of taxonomic information in plants particularly when flowers and fruits are absent during certain periods of the year. In this study, we applied an elliptic Fourier analysis (EFA)‐based morphometric technique to assess leaf morphological divergence among four species of southern African Strychnos section Densiflorae. Using leaf specimen images from field and herbarium collections, we extracted six shape variables [i.e. principal components (PCs)] from the Fourier coefficients and used these variables to describe leaf outline among the species. Our results indicate that the symmetric component of a leaf is the main source of shape differences accounting for 90.25% of total leaf shape variation and captures the more obvious range of observed shapes. PC1 of the symmetric variables describes a wide range of visually observable leaf shape among the species. MANOVA revealed significant interspecific differences except between S. innocua and S. madagascariensis, which could not be separated by outline analysis. A cross‐validated group classification suggests that S. gerrardii, with a classification rate of 88.4%, is distinct from S. madagascariensis, contrary to some taxonomic treatments. We discuss the value of geometric morphometrics at detecting subtle morphological variations and the evolutionary implications of such variations, which may be undetectable to the human eye. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 542–553.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号