首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The demographic trend of a species depends on the dynamics of its local populations, which can be compromised by local or by global phenomena. However, the relevance of local and global phenomena has rarely been investigated simultaneously. Here, we tested whether local phenomena compromised a species’ demographic trend using the Eurasian common lizard Zootoca vivipara, the terrestrial reptile exhibiting the widest geographic distribution, as a model species. We analyzed the species’ ancient demographic trend using genetic data from its 6 allopatric genetic clades and tested whether its demographic trend mainly depended on single clades or on global phenomena. Zootoca vivipara’s effective population size increased since 2.3 million years ago and started to increase steeply and continuously from 0.531 million years ago. Population growth rate exhibited 2 maxima, both occurring during global climatic changes and important vegetation changes on the northern hemisphere. Effective population size and growth rate were negatively correlated with global surface temperatures, in line with global parameters driving long-term demographic trends. Zootoca vivipara’s ancient demography was neither driven by a single clade, nor by the 2 clades that colonized huge geographic areas after the last glaciation. The low importance of local phenomena, suggests that the experimentally demonstrated high sensitivity of this species to short-term ecological changes is a response in order to cope with short-term and local changes. This suggests that what affected its long-term demographic trend the most, were not these local changes/responses, but rather the important and prolonged global climatic changes and important vegetation changes on the northern hemisphere, including the opening up of the forest by humans.  相似文献   

2.
Invasive species are one of the main causes of biodiversity loss worldwide. As introduced, populations increase in abundance and geographical range, so does the potential for negative impacts on native communities. As such, there is a need to better understand the processes driving range expansion as species become established in recipient landscapes. Through an investigation into capacity for population growth and range expansion of introduced populations of a non‐native lizard (Podarcis muralis), we aimed to demonstrate how multi‐scale factors influence spatial spread, population growth, and invasion potential in introduced species. We collated location records of P. muralis presence in England, UK through data collected from field surveys and a citizen science campaign. We used these data as input for presence‐background models to predict areas of climate suitability at a national‐scale (5 km resolution), and fine‐scale habitat suitability at the local scale (2 m resolution). We then integrated local models into an individual‐based modeling platform to simulate population dynamics and forecast range expansion for 10 populations in heterogeneous landscapes. National‐scale models indicated climate suitability has restricted the species to the southern parts of the UK, primarily by a latitudinal cline in overwintering conditions. Patterns of population growth and range expansion were related to differences in local landscape configuration and heterogeneity. Growth curves suggest populations could be in the early stages of exponential growth. However, annual rates of range expansion are predicted to be low (5–16 m). We conclude that extensive nationwide range expansion through secondary introduction is likely to be restricted by currently unsuitable climate beyond southern regions of the UK. However, exponential growth of local populations in habitats providing transport pathways is likely to increase opportunities for regional expansion. The broad habitat niche of P. muralis, coupled with configuration of habitat patches in the landscape, allows populations to increase locally with minimal dispersal.  相似文献   

3.
Relative role of intrinsic density‐dependent factors (such as inter‐ and intraspecific competition, predation) and extrinsic density‐independent factors (environmental changes) in population dynamics is a key issue in ecology. Density‐dependent mechanisms are considered as important drivers of population dynamics in many vertebrate and insect species; however, their influence on the population dynamics of freshwater invertebrates is not clearly understood. In this study, I examined interannual variations in the abundance of the glacial relict amphipod Monoporeia affinis in a small subarctic lake based on long‐term (2002–2019) monitoring data. The results suggest that the population dynamics of amphipods in the lake is influenced by the combined effects of both intrinsic and extrinsic factors. The reproductive success of amphipod cohorts was inversely related to its initial abundance, indicating it is influenced by density‐dependent factors. Maffinis recruitment was negatively correlated with population density and near‐bottom temperature but positively correlated with food availability, which is defined as the concentration of chlorophyll a. Multiple regression with chlorophyll, temperature, and abundance of parent cohort as independent factors explained about 80% of the variation in the reproductive success of amphipods. The negative correlation between amphipod recruitment and water temperature indicates that the current climate conditions adversely affect the populations of glacial relict amphipods even in cold‐water lakes of the subarctic zone. Results of this study can be useful in environmental assessments to separate population oscillations connected with density‐dependent mechanisms from human‐mediated changes.  相似文献   

4.
Dynamics of many amphibian populations are governed by the distribution and availability of water. Therefore, understanding the hydrological mechanisms that explain spatial and temporal variation in occupancy and abundance will improve our ability to conserve and recover populations of vulnerable amphibians. We used 16 years of survey data from intermittent mountain streams in the Sonoran Desert to evaluate how availability of surface water affected survival and adult recruitment of a threatened amphibian, the lowland leopard frog (Lithobates yavapaiensis). Across the entire study period, monthly survival of adults ranged from 0.72 to 0.99 during summer and 0.59 to 0.94 during winter and increased with availability of surface water (Z = 7.66; P < 0.01). Recruitment of frogs into the adult age class occurred primarily during winter and ranged from 1.9 to 3.8 individuals/season/pool; like survival, recruitment increased with availability of surface water (Z = 3.67; P < 0.01). Although abundance of frogs varied across seasons and years, we found no evidence of a systematic trend during the 16-year study period. Given the strong influence of surface water on population dynamics of leopard frogs, conservation of many riparian obligates in this and similar arid regions likely depends critically on minimizing threats to structures and ecosystem processes that maintain surface waters. Understanding the influence of surface-water availability on riparian organisms is particularly important because climate change is likely to decrease precipitation and increase ambient temperatures in desert riparian systems, both of which have the potential to alter fundamentally the hydrology of these systems.  相似文献   

5.
The population dynamics of two species of agamid (dragon) lizards were studied in the Simpson Desert, central Australia, over a period of 7 years, and modelled in relation to rainfall. Both species have annual life cycles, with adults predominating during the breeding season in spring and summer and juveniles predominating in other seasons. Within years, juvenile abundance in both species in autumn and winter was related most strongly to rainfall in the preceding summer and autumn. This pattern suggests that rainfall enhances survival, growth and possibly clutch size and hatching success. Between years, however, rainfall drove successional change in the dominant plant species in the study area, spinifex Triodia basedowii, causing in turn a shift in the relative abundance of the two species. Thus, the central netted dragon Ctenophorus nuchalis was most numerous in 1990 when vegetation cover was <10%, but declined dramatically in abundance after heavy rainfall at the end of that year. In contrast, the military dragon C. isolepis achieved greatest abundance following heavy rains in the summers of 1990 and 1994, when spinifex cover increased to >20%, and remained numerically dominant for much of the study. We suggest that drought-wet cycles periodically reverse the dominance of the two species of Ctenophorus, and perhaps of other lizard species also, thus enhancing local species diversity over time. Further long-term studies are needed to document the population dynamics of other species, and to identify the factors that influence them. Received: 11 September 1998 / Accepted: 10 February 1999  相似文献   

6.
Populations of the once common bottlenose dolphin (Tursiops truncatus) in Argentina have precipitously declined throughout the country in the past decades. Unfortunately, local declines of common species are easily overlooked when establishing priorities for conservation. In this study, demographics of what may well be the last remaining resident population in the country were assessed using mark—recapture analysis (Pollock’s Robust Design) of a photo-identification dataset collected during 2006–2011 in Bahía San Antonio (Patagonia, Argentina). Total abundance, corrected for unmarked individuals, ranged from 40 (95%CI: 16.1–98.8) to 83 (95%CI = 45.8–151.8) individuals and showed a decrease over the years. Adult survival rates varied between 0.97 (± 0.037 SE) and 0.99 (± 0.010 SE). Average calving interval equalled 3.5 ± 1.03 years, with 3.5 births/year in the entire population and a minimum annual birth rate of 4.2%. However, data suggest that calves may have been born and lost before being documented, underestimating birth rate, calf mortality, and possibly the number of reproductive females. Either way, the recruitment rate of calves appears to be insufficient to support the size of the population. This population is relatively small and declining. Considering the disappearance of populations north and south of the study area, an incessant decline will have severe consequences for the continuous existence of this species in Argentina, indicating an urgent need for serious conservation efforts. This study provides insight into how the failure to recognize local population declines can threaten the national (and eventually the international) status of a common species like the bottlenose dolphin.  相似文献   

7.
Populations need to adapt to sustained climate change, which requires micro-evolutionary change in the long term. A key question is how the rate of this micro-evolutionary change compares with the rate of environmental change, given that theoretically there is a ‘critical rate of environmental change’ beyond which increased maladaptation leads to population extinction. Here, we parametrize two closely related models to predict this critical rate using data from a long-term study of great tits (Parus major). We used stochastic dynamic programming to predict changes in optimal breeding time under three different climate scenarios. Using these results we parametrized two theoretical models to predict critical rates. Results from both models agreed qualitatively in that even ‘mild’ rates of climate change would be close to these critical rates with respect to great tit breeding time, while for scenarios close to the upper limit of IPCC climate projections the calculated critical rates would be clearly exceeded with possible consequences for population persistence. We therefore tentatively conclude that micro-evolution, together with plasticity, would rescue only the population from mild rates of climate change, although the models make many simplifying assumptions that remain to be tested.  相似文献   

8.
Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders’ web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe’s architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.  相似文献   

9.
Global climate change is causing increased climate extremes threatening biodiversity and altering ecosystems. Climate is comprised of many variables including air temperature, barometric pressure, solar radiation, wind, relative humidity, and precipitation that interact with each other. As movement connects various aspects of an animal''s life, understanding how climate influences movement at a fine‐temporal scale will be critical to the long‐term conservation of species impacted by climate change. The sedentary nature of non‐migratory species could increase some species risk of extirpation caused by climate change. We used Northern Bobwhite (Colinus virginianus; hereafter bobwhite) as a model to better understand the relationship between climate and the movement ecology of a non‐migratory species at a fine‐temporal scale. We collected movement data on bobwhite from across western Oklahoma during 2019–2020 and paired these data with meteorological data. We analyzed movement in three different ways (probability of movement, hourly distance moved, and sinuosity) using two calculated movement metrics: hourly movement (displacement between two consecutive fixes an hour apart) and sinuosity (a form of tortuosity that determines the amount of curvature of a random search path). We used generalized linear‐mixed models to analyze probability of movement and hourly distance moved, and used linear‐mixed models to analyze sinuosity. The interaction between air temperature and solar radiation affected probability of movement and hourly distance moved. Bobwhite movement increased as air temperature increased beyond 10°C during low solar radiation. During medium and high solar radiation, bobwhite moved farther as air temperature increased until 25–30°C when hourly distance moved plateaued. Bobwhite sinuosity increased as solar radiation increased. Our results show that specific climate variables alter the fine‐scale movement of a non‐migratory species. Understanding the link between climate and movement is important to determining how climate change may impact a species’ space use and fitness now and in the future.  相似文献   

10.
Quantifying how climate and land use factors drive population dynamics at regional scales is complex because it depends on the extent of spatial and temporal synchrony among local populations, and the integration of population processes throughout a species’ annual cycle. We modeled weekly, site‐specific summer abundance (1994–2013) of monarch butterflies Danaus plexippus at sites across Illinois, USA to assess relative associations of monarch abundance with climate and land use variables during the winter, spring, and summer stages of their annual cycle. We developed negative binomial regression models to estimate monarch abundance during recruitment in Illinois as a function of local climate, site‐specific crop cover, and county‐level herbicide (glyphosate) application. We also incorporated cross‐seasonal covariates, including annual abundance of wintering monarchs in Mexico and climate conditions during spring migration and breeding in Texas, USA. We provide the first empirical evidence of a negative association between county‐level glyphosate application and local abundance of adult monarchs, particularly in areas of concentrated agriculture. However, this association was only evident during the initial years of the adoption of herbicide‐resistant crops (1994–2003). We also found that wetter and, to a lesser degree, cooler springs in Texas were associated with higher summer abundances in Illinois, as were relatively cool local summer temperatures in Illinois. Site‐specific abundance of monarchs averaged approximately one fewer per site from 2004–2013 than during the previous decade, suggesting a recent decline in local abundance of monarch butterflies on their summer breeding grounds in Illinois. Our results demonstrate that seasonal climate and land use are associated with trends in adult monarch abundance, and our approach highlights the value of considering fine‐resolution temporal fluctuations in population‐level responses to environmental conditions when inferring the dynamics of migratory species.  相似文献   

11.
Effect of warming and drought on grassland microbial communities   总被引:1,自引:0,他引:1  
The soil microbiome is responsible for mediating key ecological processes; however, little is known about its sensitivity to climate change. Observed increases in global temperatures and alteration to rainfall patterns, due to anthropogenic release of greenhouse gases, will likely have a strong influence on soil microbial communities and ultimately the ecosystem services they provide. Therefore, it is vital to understand how soil microbial communities will respond to future climate change scenarios. To this end, we surveyed the abundance, diversity and structure of microbial communities over a 2-year period from a long-term in situ warming experiment that experienced a moderate natural drought. We found the warming treatment and soil water budgets strongly influence bacterial population size and diversity. In normal precipitation years, the warming treatment significantly increased microbial population size 40–150% but decreased diversity and significantly changed the composition of the community when compared with the unwarmed controls. However during drought conditions, the warming treatment significantly reduced soil moisture thereby creating unfavorable growth conditions that led to a 50–80% reduction in the microbial population size when compared with the control. Warmed plots also saw an increase in species richness, diversity and evenness; however, community composition was unaffected suggesting that few phylotypes may be active under these stressful conditions. Our results indicate that under warmed conditions, ecosystem water budget regulates the abundance and diversity of microbial populations and that rainfall timing is critical at the onset of drought for sustaining microbial populations.  相似文献   

12.
Roughly 40% of amphibian species are in decline with habitat loss, disease, and climate change being the most cited threats. Heterogeneity of extrinsic (e.g. climate) and intrinsic (e.g. local adaptations) factors across a species’ range should influence population response to climate change and other threats. Here we examine relative detectability changes for five direct-developing leaf litter frogs between 42-year sampling periods at one Lowland Tropical Forest site (51 m.a.s.l.) and one Premontane Wet Forest site (1100 m.a.s.l.) in southwest Costa Rica. We identify individualistic changes in relative detectability among populations between sampling periods at different elevations. Both common and rare species showed site-specific declines, and no species exhibited significant declines at both sites. Detection changes are correlated with changes in temperature, dry season rainfall, and leaf litter depth since1969. Our study species share Least Concern conservation status, life history traits, and close phylogenetic relationship, yet their populations changed individualistically both within and among species. These results counter current views of the uniformity or predictability of amphibian decline response and suggest additional complexity for conservation decisions.  相似文献   

13.
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions.  相似文献   

14.
The invasive snake Hemorrhois hippocrepis colonized the island of Ibiza (Balearic Islands) in 2003 as stowaways inside trunks of olive trees imported for gardening. It has quickly spread since 2010, posing a threat to the island’s only remaining endemic vertebrate, the Ibiza wall lizard Podarcis pityusensis. We map the yearly expansion rate of the snake and estimate via transect surveys how severely it affects the distribution and abundance of the endemic lizard. As well, we surveyed 9 of 30 small lizard populations on islets surrounding Ibiza that have been isolated since the Last Glacial Maximum. Snakes had invaded 49% of Ibiza’s land area by 2018, and censuses show a critical contrast in lizard abundance between areas with and without snakes; almost all censuses in areas without snakes show lizard presence whereas nearly all censuses in areas with H. hippocrepis lack lizard sightings. Moreover, at least one subspecies previously thriving on one of the offshore islets has become extinct, and there have been several snakes recorded swimming between Ibiza and the surrounding islets. Therefore, lizard populations have been dramatically reduced or have vanished within the range of the snake, and our results quantitatively support upgrading this species’ threat level for extinction. This study can inform to programs to manage invasive snake populations and to conservation actions to recover the endemic lizard.  相似文献   

15.
The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998–2011/2012) and short-term (2011–2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990–2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species’ elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species'' geographical ranges in Europe, weighted by species'' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011–2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species’ resilience may have to be devised.  相似文献   

16.
The influence of large‐scale variables such as climate change on phenology has received a great deal of research attention. However, local environmental factors also play a key role in determining the timing of species life cycles. Using the meadow brown butterfly Maniola jurtina as an example, we investigate how a specific habitat type, lowland calcareous grassland, can affect the timing of flight dates. Although protracted flight periods have previously been reported in populations on chalk grassland sites in the south of England, no attempt has yet been made to quantify this at a national level, or to assess links with population genetics and drought tolerance. Using data from 539 sites across the UK, these differences in phenology are quantified, and Mjurtina phenology is found to be strongly associated with both site geology and topography, independent of levels of abundance. Further investigation into aspects of Mjurtina ecology at a subset of sites finds no genetic structuring or drought tolerance associated with these same site conditions.  相似文献   

17.
Global circulation models predict increased climatic variability, which could increase variability in demographic rates and affect long-term population viability. In animal-pollinated species, pollination services, and thus fruit and seed set, may be highly variable among years and sites, and depend on both local environmental conditions and climatic variables. Orchid species may be particularly vulnerable to disruption of their pollination services, as most species depend on pollinators for successful fruit set and because seed germination and seedling recruitment are to some extent dependent on the amount of fruits and seeds produced. Better insights into the factors determining fruit and seed set are therefore indispensable for a better understanding of population dynamics and viability of orchid populations under changing climatic conditions. However, very few studies have investigated spatio-temporal variation in fruit set in orchids. Here, we quantified fruit production in eight populations of the orchid Orchis purpurea that does not reward pollinators and 13 populations of the rewarding Neottia (Listera) ovata during five consecutive years (2002–2006). Fruit production in large populations showed much higher stability than that in small populations and was less affected by extreme weather conditions. Our results highlight the potential vulnerability of small orchid populations to an increasingly variable climate through highly unpredictable fruit-set patterns.  相似文献   

18.
Climate change is expected to influence the viability of populations both directly and indirectly, via species interactions. The effects of large‐scale climate change are also likely to interact with local habitat conditions. Management actions designed to preserve threatened species therefore need to adapt both to the prevailing climate and local conditions. Yet, few studies have separated the direct and indirect effects of climatic variables on the viability of local populations and discussed the implications for optimal management. We used 30 years of demographic data to estimate the simultaneous effects of management practice and among‐year variation in four climatic variables on individual survival, growth and fecundity in one coastal and one inland population of the perennial orchid Dactylorhiza lapponica in Norway. Current management, mowing, is expected to reduce competitive interactions. Statistical models of how climate and management practice influenced vital rates were incorporated into matrix population models to quantify effects on population growth rate. Effects of climate differed between mown and control plots in both populations. In particular, population growth rate increased more strongly with summer temperature in mown plots than in control plots. Population growth rate declined with spring temperature in the inland population, and with precipitation in the coastal population, and the decline was stronger in control plots in both populations. These results illustrate that both direct and indirect effects of climate change are important for population viability and that net effects depend both on local abiotic conditions and on biotic conditions in terms of management practice and intensity of competition. The results also show that effects of management practices influencing competitive interactions can strongly depend on climatic factors. We conclude that interactions between climate and management should be considered to reliably predict future population viability and optimize conservation actions.  相似文献   

19.
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.  相似文献   

20.
Isolated populations or those at the edge of their distribution are usually more sensitive to changes in the environment, such as climate change. For the barnacle Semibalanus balanoides (L.), one possible effect of climate change is that unpredictable spring weather could lead to the mismatching of larval release with spring phytoplankton bloom, hence reducing the recruitment. In this paper, model simulations of a variable open population with space limited recruitment were used to investigate the effects of low and zero recruitment on population abundance in S. balanoides. Data for model parameters was taken from an isolated population in the Isle of Man, British Isles. Model simulations with observed frequencies of years with low recruitment showed only small changes in population dynamics. Increased frequencies of low recruitment had large effects on the variation in population growth rate and free space and on population structure. Furthermore, populations with intermediate to high frequencies of low recruitment appeared more sensitive to additional changes in recruitment. Exchanging low recruitment with zero recruitment severely increased the risk of local extinctions. Simulations with consecutive years of low recruitment showed a substantial increase in free space and an increase in the time taken to recover to normal densities. In conclusion, model simulations indicate that variable populations can be well buffered to changes in the demography caused by introduced environmental noise, but also, that intermediate to high frequencies of disturbance can lead to a swift change in population dynamics, which in turn, may affect the dynamics of whole communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号