首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 983 毫秒
1.
The present studies were designed to examine the effects of ClC-2 ablation on cellular morphology, parietal cell abundance, H/K ATPase expression, parietal cell ultrastructure and acid secretion using WT and ClC-2-/- mouse stomachs. Cellular histology, morphology and proteins were examined using imaging techniques, electron microscopy and western blot. The effect of histamine on the pH of gastric contents was measured. Acid secretion was also measured using methods and secretagogues previously established to give maximal acid secretion and morphological change. Compared to WT, ClC-2-/- gastric mucosal histological organization appeared disrupted, including dilation of gastric glands, shortening of the gastric gland region and disorganization of all cell layers. Parietal cell numbers and H/K ATPase expression were significantly reduced by 34% (P<0.05) and 53% (P<0.001) respectively and cytoplasmic tubulovesicles appeared markedly reduced on electron microscopic evaluation without evidence of canalicular expansion. In WT parietal cells, ClC-2 was apparent in a similar cellular location as the H/K ATPase by immunofluorescence and appeared associated with tubulovesicles by immunogold electron microscopy. Histamine-stimulated [H+] of the gastric contents was significantly (P<0.025) lower by 9.4 fold (89%) in the ClC-2-/- mouse compared to WT. Histamine/carbachol stimulated gastric acid secretion was significantly reduced (range 84–95%, P<0.005) in ClC-2-/- compared to WT, while pepsinogen secretion was unaffected. Genetic ablation of ClC-2 resulted in reduced gastric gland region, reduced parietal cell number, reduced H/K ATPase, reduced tubulovesicles and reduced stimulated acid secretion.  相似文献   

2.
Declined vasorelaxation function in aging resistance arteries is responsible for aging-related multiple organ dysfunctions. The aim of the present study is to explore the role of peroxynitrite (ONOO-) in aging resistance arterial vasorelaxation dysfunction and the possible mechanism. In the present study, young (3–4 months olds) and aging (20 months olds) male SD rats were randomized to receive vehicle (Saline) or FeTMPyP (ONOO- scavenger) for 2 weeks. The vasorelaxation of resistance arteries was determined in vitro; NOx level was tested by a colorimetric assay; the expression of nitrotyrosine (NT), soluble Guanylate Cyclase (sGC), vasodilator-stimulated phosphoprotein (VASP), phosphorylated VASP (P-VASP) and cGMP in resistance arteries were detected by immunohistochemical staining. In the present study, endothelium-dependent dilation in aging resistance arteries was lower than in those from young rats (young vs. aging: 68.0%±4.5% vs. 50.4%±2.9%, P<0.01). And the endothelium-independent dilation remained constant. Compared with young rats, aging increased nitrative stress in resistance arteries, evidenced by elevated NOx production in serum (5.3±1.0 nmol/ml vs. 3.3±1.4 nmol/ml, P<0.05) and increased NT expression (P<0.05). ONOO- was responsible for the vasorelaxation dysfunction, evidenced by normalized vasorelaxation after inhibit ONOO- or its sources (P<0.05) and suppressed NT expression after FeTMPyP treatment (P<0.05). The expression of sGC was not significantly different between young and aging resistance arteries, but the cGMP level and P-VASP/VASP ratio (biochemical marker of NO-sGC-cGKs signaling) decreased, which was reversed by FeTMPyP treatment in vivo (P<0.05). The present study suggested that ONOO- mediated the decline of endothelium-dependent vasorelaxation of aging resistance arteries by induction of the NO-sGC-cGKs pathway dysfunction.  相似文献   

3.

Introduction

The purpose of this study was to evaluate the effects of L-4F, an apolipoprotein A-1 mimetic peptide, alone or with pravastatin, in apoE-/-Fas-/-C57BL/6 mice that spontaneously develop immunoglobulin G (IgG) autoantibodies, glomerulonephritis, osteopenia, and atherosclerotic lesions on a normal chow diet.

Methods

Female mice, starting at eight to nine weeks of age, were treated for 27 weeks with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, followed by disease phenotype assessment.

Results

In preliminary studies, dysfunctional, proinflammatory high-density lipoproteins (piHDL) were decreased six hours after a single L-4F, but not scrambled L-4F, injection in eight- to nine-week old mice. After 35 weeks, L-4F-treated mice, in the absence/presence of pravastatin, had significantly smaller lymph nodes and glomerular tufts (PL, LP < 0.05), lower serum levels of IgG antibodies to double stranded DNA (dsDNA) (PL < 0.05) and oxidized phospholipids (oxPLs) (PL, LP < 0.005), and elevated total and vertebral bone mineral density (PL, LP < 0.01) compared to vehicle controls. Although all treatment groups presented larger aortic root lesions compared to vehicle controls, enlarged atheromas in combination treatment mice had significantly less infiltrated CD68+ macrophages (PLP < 0.01), significantly increased mean α-actin stained area (PLP < 0.05), and significantly lower levels of circulating markers for atherosclerosis progression, CCL19 (PL, LP < 0.0005) and VCAM-1 (PL < 0.0002).

Conclusions

L-4F treatment, alone or with pravastatin, significantly reduced IgG anti-dsDNA and IgG anti-oxPLs, proteinuria, glomerulonephritis, and osteopenia in a murine lupus model of accelerated atherosclerosis. Despite enlarged aortic lesions, increased smooth muscle content, decreased macrophage infiltration, and decreased pro-atherogenic chemokines in L-4F plus pravastatin treated mice suggest protective mechanisms not only on lupus-like disease, but also on potential plaque remodeling in a murine model of systemic lupus erythematosus (SLE) and accelerated atherosclerosis.  相似文献   

4.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   

5.
Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.  相似文献   

6.

Background

Gossypol is a chemical present in the seeds of cotton plants (Gossypium sp.) that reduces fertility in farm animals. Vitamin E is an antioxidant and may help to protect cells and tissues against the deleterious effects of free radicals. The aim of this study was to evaluate the mechanisms of reproductive toxicity of gossypol in rats and the protective effects of vitamin E. Forty Wistar rats were used, divided into four experimental groups (n = 10): DMSO/saline + corn oil; DMSO/saline + vitamin E; gossypol + corn oil; and gossypol + vitamin E.

Results

Fertility was significantly reduced in male rats treated with gossypol in that a significant decrease in epididymal sperm count was observed (P < 0.05) and the number of offspring was significantly reduced in females mated with them (P < 0.05). This dysfunction was prevented by vitamin E. Gossypol caused a significant increase in the activity of the enzymes glutathione peroxidase (P < 0.01) and glutathione reductase (P < 0.01), but vitamin E did not reduce the enzyme activities (P > 0.05). The levels of reduced glutathione and pyridine nucleotides in testis homogenate were significantly reduced by gossypol (P < 0.05 and P < 0.01, respectively) and this reduction was accompanied by increased levels of oxidized glutathione (P < 0.05). Vitamin E showed a preventive effect on the changes in the levels of these substances. Gossypol significantly increased the levels of malondialdehyde (P < 0.01), a lipid peroxidation indicator, whereas treatment with vitamin E inhibited the action of the gossypol. Vitamin E prevented a decrease in mitochondrial ATP induced by gossypol (P < 0.05).

Conclusions

This study suggests that the reproductive dysfunction caused by gossypol may be related to oxidative stress and mitochondrial bioenergetic damage and that treatment with vitamin E can prevent the infertility caused by the toxin.  相似文献   

7.
To investigate the effect of COVID-19 lockdown on match-play metrics in professional football referees during official matches of the Spanish professional leagues. Forty-two professional football referees from the First (n = 20) and Second Division (n = 22) were monitored during 564 official games using Global Positioning System (GPS) technology. Data of matches before lockdown were compared to matches after resumption of the competition. Compared to pre-lockdown, in the referees of the First Division there was a decrease in the total running distance and the distance covered at all speed thresholds > 6 km · h-1 after lockdown (P < .05). In the Second Division referees, the post-lockdown measurement only showed a decrease in the running distance at 21–24 km · h-1 (P < .05), with no changes in the other speed thresholds. The post-lockdown measurement showed an increased distance covered at < 6 km · h-1 and the number of accelerations for both First and Second Division referees (P < .05). Referees’ match activity was reduced due to the COVID-19 lockdown, while the effect on running parameters was more pronounced in First Division referees.  相似文献   

8.
The secretion function of intestinal graft is one of the most important factors for successful intestinal transplantation. Cystic fibrosis transmembrane conductance regulator (CFTR) mediates HCO3 - and Cl- secretions in intestinal epithelial cells. In this study, we made investigation on the expression and function of CFTR in an experimental model of murine small intestinal transplantation. Heterotopic intestinal transplantations were performed in syngeneic mice. The mRNA and protein expressions of CFTR were analyzed by real time PCR and western blot. Murine intestinal mucosal HCO3 - and Cl- secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. The results showed that forskolin, an activator of CFTR, stimulated jejunal mucosal epithelial HCO3 - and Cl- secretions in mice, but forskolin-stimulated HCO3 - and Cl- secretions in donor and recipient jejunal mucosae of mice after heterotopic jejunal transplantation were markedly decreased, compared with controls (P<0.001). The mRNA and protein expression levels of CFTR in donor and recipient jejunal mucosae of mice were also markedly lower than those in controls (P<0.001), and the mRNA and protein expression levels of tumor necrosis factor α (TNFα) were markedly increased in donor jejunal mucosae of mice (P<0.001), compared with controls. Further experiments showed that TNFα down-regulated the expression of CFTR mRNA in murine jejunal mucosa. In conclusion, after intestinal transplantation, the function of CFTR was impaired, and its mRNA and protein expressions were down-regulated, which may be induced by TNFα.  相似文献   

9.
Calcium is a ubiquitous second messenger in urinary bladder smooth muscle (UBSM). In this study, small discrete elevations of intracellular Ca2+, referred to as Ca2+ sparklets have been detected in an intact detrusor smooth muscle electrical syncytium using a TIRF microscopy Ca2+ imaging approach. Sparklets were virtually abolished by the removal of extracellular Ca2+ (0.035±0.01 vs. 0.23±0.07 Hz/mm2; P<0.05). Co-loading of smooth muscle strips with the slow Ca2+ chelator EGTA-AM (10 mM) confirmed that Ca2+ sparklets are restricted to the cell membrane. Ca2+ sparklets were inhibited by the calcium channel inhibitors R-(+)-Bay K 8644 (1 μM) (0.034±0.02 vs. 0.21±0.08 Hz/mm2; P<0.05), and diltiazem (10 μM) (0.097±0.04 vs. 0.16±0.06 Hz/mm2; P<0.05). Ca2+ sparklets were unaffected by inhibition of P2X1 receptors α,β-meATP (10 μM) whilst sparklet frequencies were significantly reduced by atropine (1 μM). Ca2+ sparklet frequency was significantly reduced by PKC inhibition with Gö6976 (100 nM) (0.030±0.01 vs. 0.30±0.1 Hz/mm2; P<0.05), demonstrating that Ca2+ sparklets are PKC dependant. In the presence of CPA (10 μM), there was no apparent change in the overall frequency of Ca2+ sparklets, although the sparklet frequencies of each UBSM became statistically independent of each other (Spearman''s rank correlation 0.2, P>0.05), implying that Ca2+ store mediated signals regulate Ca2+ sparklets. Under control conditions, inhibition of store operated Ca2+ entry using ML-9 (100 μM) had no significant effect. Amplitudes of Ca2+ sparklets were unaffected by any agonists or antagonists, suggesting that these signals are quantal events arising from activation of a single channel, or complex of channels. The effects of CPA and ML-9 suggest that Ca2+ sparklets regulate events in the cell membrane, and contribute to cytosolic and sarcoplasmic Ca2+ concentrations.  相似文献   

10.
Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines, CMT-U229 and MCF-7, and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4, E-cadherin, N-cadherin and vimentin, as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4, E-cadherin, N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (P<0.05). Immunofluorescence staining showed increased E-cadherin expression (P<0.05) and decreased expression of OCT4, N-cadherin and vimentin (P<0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover, treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (P<0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.  相似文献   

11.
Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14C-labelled glucose and 3H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve local PO2, minimising regions of hypoxia and hence maximising the area of myocardium able to preserve cardiac output following maternal hypoxia.  相似文献   

12.

Purpose

To investigate the effects of curcumin on the development of experimental choroidal neovascularization (CNV) with underlying cellular and molecular mechanisms.

Methods

C57BL/6N mice were pretreated with intraperitoneal injections of curcumin daily for 3 days prior to laser-induced CNV, and the drug treatments were continued until the end of the study. The CNV area was analyzed by fluorescein-labeled dextran angiography of retinal pigment epithelium (RPE)-choroid flat mounts on day 7 and 14, and CNV leakage was evaluated by fluorescein angiography (FA) on day 14 after laser photocoagulation. The infiltration of F4/80 positive macrophages and GR-1 positive granulocytes were evaluated by immunohistochemistry on RPE-choroid flat mounts on day 3. Their expression in RPE-choroid complex was quantified by real-time PCR (F4/80) and Western blotting (GR-1) on day 3. RPE-choroid levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, and intercellular adhesion molecule (ICAM)-1 were examined by ELISA on day 3. Double immunostaining of F4/80 and VEGF was performed on cryo-sections of CNV lesions on day 3. The expression of nuclear factor (NF)-κB and hypoxia-inducible factor (HIF)−1α in the RPE-choroid was determined by Western blotting.

Results

Curcumin-treated mice had significantly less CNV area (P<0.05) and CNV leakage (P<0.001) than vehicle-treated mice. Curcumin treatment led to significant inhibition of F4/80 positive macrophages (P<0.05) and GR-1 positive granulocytes infiltration (P<0.05). VEGF mainly expressed in F4/80 positive macrophages in laser injury sites, which was suppressed by curcumin treatment (P<0.01). Curcumin inhibited the RPE-choroid levels of TNF-α (P<0.05), MCP-1 (P<0.05) and ICAM-1 (P<0.05), and suppressed the activation of NF-κB in nuclear extracts (P<0.05) and the activation of HIF−1α (P<0.05).

Conclusion

Curcumin treatment led to the suppression of CNV development together with inflammatory and angiogenic processes including NF-κB and HIF−1α activation, the up-regulation of inflammatory and angiogenic cytokines, and infiltrating macrophages and granulocytes. This provides molecular and cellular evidence of the validity of curcumin supplementation as a therapeutic strategy for the suppression of age-related macular degeneration (AMD)-associated CNV.  相似文献   

13.

Objective

Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue.

Methods

164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses.

Results

There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001).

Conclusions

Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.  相似文献   

14.
Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene in several solid tumors. However, the expression and function of BRMS1 in glioma have not been reported. In this study, we investigated whether BRMS1 play a role in glioma pathogenesis. Using the tissue microarray technology, we found that BRMS1 expression is significantly decreased in glioma compared with tumor adjacent normal brain tissue (P<0.01, χ2 test) and reduced BRMS1 staining is associated with WHO stages (P<0.05, χ2 test). We also found that BRMS1 was significantly downregulated in glioma cell lines compared to normal human astrocytes (P<0.01, χ2 test). Furthermore, we demonstrated that BRMS1 overexpression inhibited glioma cell invasion by suppressing uPA, NF-κB, MMP-2 expression and MMP-2 enzyme activity. Moreover, our data showed that overexpression of BRMS1 inhibited glioma cell migration and adhesion capacity compared with the control group through the Src-FAK pathway. Taken together, this study suggested that BRMS1 has a role in glioma development and progression by regulating invasion, migration and adhesion activities of cancer cells.  相似文献   

15.
Pathway-based analysis as an alternative approach can provide complementary information to single-marker genome-wide association studies (GWASs), which always ignore the epistasis and does not have sufficient power to find rare variants. In this study, using genotypes from a genome-wide association study (GWAS), pathway-based association studies were carried out by a modified Gene Set Enrichment Algorithm (GSEA) method (GenGen) for triglyceride in 1028 unrelated European-American extremely obese females (BMI≥35kg/m2) and normal-weight controls (BMI<25kg/m2), and another pathway association analysis (ICSNPathway) was also used to verify the GenGen result in the same data. The GO0009110 pathway (vitamin anabolism) was among the strongest associations with triglyceride (empirical P<0.001); the result remained significant after FDR correction (P = 0.022). MMAB, an obesity-related locus, included in this pathway. The ABCG1 and BCL6 gene was found in several triglyceride-related pathways (empirical P<0.05), which were also replicated by ICSNPathway (empirical P<0.05, FDR<0.05). We also performed single-marked GWAS using PLINK for TG levels (log-transformed). Significant associations were found between ASTN2 gene SNPs and plasma triglyceride levels (rs7035794, P = 2.24×10−10). Our study suggested that vitamin anabolism pathway, BCL6 gene pathways and ASTN2 gene may contribute to the genetic variation of plasma triglyceride concentrations.  相似文献   

16.
The oxygen cost of transport per unit distance (CoT; mL·kg-1·km-1) shows a U-shaped curve as a function of walking speed (v), which includes a particular walking speed minimizing the CoT, so called economical speed (ES). The CoT-v relationship in running is approximately linear. These distinctive walking and running CoT-v relationships give an intersection between U-shaped and linear CoT relationships, termed the energetically optimal transition speed (EOTS). This study investigated the effects of subtracting the standing oxygen cost for calculating the CoT and its relevant effects on the ES and EOTS at the level and gradient slopes (±5%) in eleven male trained athletes. The percent effects of subtracting the standing oxygen cost (4.8 ± 0.4 mL·kg-1·min-1) on the CoT were significantly greater as the walking speed was slower, but it was not significant at faster running speeds over 9.4 km·h-1. The percent effect was significantly dependent on the gradient (downhill > level > uphill, P < 0.001). The net ES (level 4.09 ± 0.31, uphill 4.22 ± 0.37, and downhill 4.16 ± 0.44 km·h-1) was approximately 20% slower than the gross ES (level 5.15 ± 0.18, uphill 5.27 ± 0.20, and downhill 5.37 ± 0.22 km·h-1, P < 0.001). Both net and gross ES were not significantly dependent on the gradient. In contrast, the gross EOTS was slower than the net EOTS at the level (7.49 ± 0.32 vs. 7.63 ± 0.36 km·h-1, P = 0.003) and downhill gradients (7.78 ± 0.33 vs. 8.01 ± 0.41 km·h-1, P < 0.001), but not at the uphill gradient (7.55 ± 0.37 vs. 7.63 ± 0.51 km·h-1, P = 0.080). Note that those percent differences were less than 2.9%. Given these results, a subtraction of the standing oxygen cost should be carefully considered depending on the purpose of each study.  相似文献   

17.
IntroductionTocilizumab (TCZ), an anti-interleukin-6 receptor antibody, is clinically effective against rheumatoid arthritis (RA), and several reports have indicated how TCZ influences a number of mechanisms underlying RA pathogenesis. However, it is still unclear whether TCZ affects inflammatory cells in peripheral blood and whether any such changes are associated with clinical response. We evaluated associations between proportions of subsets of peripheral immune cells and clinical response in patients with RA treated with TCZ.MethodsThirty-nine consecutive patients with RA who started to receive TCZ as their first biologic between March 2010 and April 2012 were enrolled. The proportions of several subsets of peripheral cells with their levels of expression of differentiation markers, activation markers and costimulatory molecules were measured sequentially from baseline to week 52 by flow cytometry analysis.ResultsClinical Disease Activity Index (CDAI) remission was achieved in 53.8% of patients at week 52 of TCZ therapy. The proportions of CD4+CD25+CD127low regulatory T cells (Treg) and HLA-DR+ activated Treg cells significantly increased with TCZ therapy (P < 0.001 and P < 0.001, respectively), whereas proportions of CD3+CD4+CXCR3CCR6+CD161+ T helper 17 cells did not change over the 52 weeks. The proportions of CD20+CD27+ memory B cells, HLA-DR+CD14+ and CD69+CD14+ activated monocytes, and CD16+CD14+ monocytes significantly decreased (P < 0.001, P < 0.001, P < 0.001 and P < 0.001, respectively). Among them, only the change in Treg cells was inversely correlated with the change in CDAI score (ρ = −0.40, P = 0.011). The most dynamic increase in Treg cells was observed in the CDAI remission group (P < 0.001).ConclusionThis study demonstrates that TCZ affected proportions of circulating immune cells in patients with RA. The proportion of Treg cells among CD4+ cells correlated well with clinical response.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0526-4) contains supplementary material, which is available to authorized users.  相似文献   

18.
The metacestode stage of Echinococcus granulosus can cause cystic echinococcosis (CE), which still widely occurs around the world. Since the early 1970s, benzimidazoles have been shown to inhibit the growth of cysts and used to treat CE. However, benzimidazoles are still ineffective in 20%-40% of cases. In order to explore the new agents against CE, we have investigated the therapeutic effect of the recombinant adenoviral vector expressing mouse IL-28B (rAd-mIL-28B) on protoscoleces-infected mice. In our study, we successfully established the model mice which infected with protoscoleces intraperitoneally. At 18 weeks post-infection, the mice received rAd-mIL-28B (1×107 PFU) weekly by intramuscular injection for 6 weeks. Compared with the untreated control (13.1 ± 2.2 g), there was a significant reduction in cysts wet weight in rAd-mIL-28B group (8.3 ± 3.5 g) (P < 0.05), especially in Albendazole (ABZ) + rAd-mIL-28B group (5.8 ± 1.4 g) (P < 0.01). We also observed the severe damage of the germinal layer and the laminated layer of cysts after treatment. rAd-mIL-28B group showed a prominent increase in the level of Th1 type cytokines (such as IFN-γ, IL-2 and TNF-α). Meanwhile, the frequency of Foxp3+ T cells was decreased in the rAd-mIL-28B group (4.83 ± 0.81%) and ABZ + rAd-mIL-28B group (4.60 ± 0.51%), comparing with the untreated group (8.13 ± 2.60%) (P < 0.05). In addition, compared with the untreated control (122.14 ± 81.09 pg/ml), the level of IFN-γ significantly increased in peritoneal fluid in the rAd-mIL-28B group (628.87 ± 467.16 pg/ml) (P < 0.05) and ABZ + rAd-mIL-28B group (999.76 ± 587.60 pg/ml) (P < 0.001). Taken together, it suggested that ABZ + IL-28B may be a potential therapeutic agent against CE.  相似文献   

19.
A protective reagent for ARI should have the ability to repair injured tissue caused by radiation and prevent continuous damage from secondary risk factors. Trx-1 was explored as a candidate therapy for ARI, as it scavenges reactive oxygen species, regulates cell growth and differentiation, participates in immune reactions, and inhibits apoptosis by acting inside and/or outside cells. Trx-1 can also decrease excessive inflammation in ARI by regulating the creation of inflamed media, by inhibiting the activation of complement, and by reducing the chemotaxis, adhesion, and migration of inflammatory cells. As effectively and stably expressing exogenous genes in the long term and regulating immune inflammation and tissue repair, MSC are a good choice for Trx-1 gene therapy. In this study, Trx-1-overexpressing hucMSC-Trx-1 were obtained by adenoviral vector-mediated infection. We first measured the redox capacity of hucMSC-Trx-1 with an antioxidant capacity (T-AOC) assay, a hydrogen peroxide (H2O2) content determination assay in vivo, a H2O2-induced oxidation hemolysis assay, and a lipid peroxidation assay in vitro. Then, we measured survival time, the protection of the hematopoietic system, and the regulation of inflammation in important organs in three treatment groups of NOD/SCID mice (treated with hucMSC-Trx-1, with hucMSC, and with saline) that were exposed to 4.5 Gy 60Co-γ-ray radiation. The hucMSC-Trx-1 group achieved superior antioxidation results, protecting bone marrow hematopoietic stem cells (LinCD117+: hucMSC-Trx-1 vs. hucMSC, P<0.05; hucMSC-Trx-1 vs. NS, P<0.01), promoting the formation of red blood cells and hemoglobin (hucMSC-Trx-1 vs. hucMSC or NS, P<0.05), reducing inflammation and damage in important organs (Bone marrow and lung: hucMSC-Trx-1 vs. NS, P<0.01; hucMSC-Trx-1 vs. hucMSC, P<0.05. Liver and intestine: hucMSC-Trx-1 vs. NS, P<0.05; hucMSC-Trx-1 vs. hucMSC, P<0.05), and prolonging survival (hucMSC-Trx-1 vs. hucMSC or NS, P<0.01). Therefore, hucMSC-Trx-1 combines the merits of gene and cell therapy as a multifunctional radioprotector for ARI.  相似文献   

20.
Hydroxyurea (HU) is an FDA-approved drug used to treat a variety of diseases, especially malignancies, but is harmful to fertility. We used porcine oocytes as an experimental model to study the effect of HU during oocyte maturation. Exposure of cumulus–oocyte complexes (COCs) to 20 µM (P<0.01) and 50 µM (P<0.001) HU reduced oocyte maturation. Exposure to 20 µM HU induced approximately 1.5- and 2-fold increases in Caspase-3 (P<0.001) and P53 (P<0.01) gene expression levels in cumulus cells, respectively, increased Caspase-3 (P<0.01) and P53 (P<0.001) protein expression levels in metaphase II (MII) oocytes and increased the percentage of apoptotic cumulus cells (P<0.001). In addition, HU decreased the mitochondrial membrane potential (Δφm) (P<0.01 and P<0.001) and glutathione (GSH) levels (P<0.01 and P<0.001) of both cumulus cells and MII oocytes, while increasing their reactive oxygen species (ROS) levels (P<0.001). Following parthenogenetic activation of embryos derived from MII oocytes, exposure to 20 µM HU significantly reduced total blastocyst cell numbers (P<0.001) and increased apoptosis of blastocyst cells (P<0.001). Moreover, HU exposure reduced the rate of development of two-celled, four- to eight-celled, blastocyst, and hatching stages after parthenogenetic activation (P<0.05). Our findings indicate that exposure to 20 µM HU caused significant oxidative stress and apoptosis of MII oocytes during maturation, which affected their developmental ability. These results provide valuable information for safety assessments of HU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号