首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER–LD contacts in human cells, typically via one mobile focal point per LD. Seipin appears critical for such contacts since ER–LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin‐deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre‐existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER–LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.  相似文献   

2.
Cells store lipids as a reservoir of metabolic energy and membrane component precursors in organelles called lipid droplets (LDs). LD formation occurs in the endoplasmic reticulum (ER) at LD assembly complexes (LDAC), consisting of an oligomeric core of seipin and accessory proteins. LDACs determine the sites of LD formation and are required for this process to occur normally. Seipin oligomers form a cage-like structure in the membrane that may serve to facilitate the phase transition of neutral lipids in the membrane to form an oil droplet within the LDAC. Modeling suggests that, as the LD grows, seipin anchors it to the ER bilayer and conformational shifts of seipin transmembrane segments open the LDAC dome toward the cytoplasm, enabling the emerging LD to egress from the ER.  相似文献   

3.
Cholesteryl ester (CE)-rich lipid droplets (LDs) accumulate in steroidogenic tissues under physiological conditions and constitute an important source of cholesterol as the precursor for the synthesis of all steroid hormones. The mechanisms specifically involved in CE-rich LD formation have not been directly studied and are assumed by most to occur in a fashion analogous to triacylglycerol-rich LDs. Seipin is an endoplasmic reticulum protein that forms oligomeric complexes at endoplasmic reticulum-LD contact sites, and seipin deficiency results in severe alterations in LD maturation and morphology as seen in Berardinelli-Seip congenital lipodystrophy type 2. While seipin is critical for triacylglycerol-rich LD formation, no studies have directly addressed whether seipin is important for CE-rich LD biogenesis. To address this issue, mice with deficient expression of seipin specifically in adrenal, testis, and ovary, steroidogenic tissues that accumulate CE-rich LDs under normal physiological conditions, were generated. We found that the steroidogenic-specific seipin-deficient mice displayed a marked reduction in LD and CE accumulation in the adrenals, demonstrating the pivotal role of seipin in CE-rich LD accumulation/formation. Moreover, the reduction in CE-rich LDs was associated with significant defects in adrenal and gonadal steroid hormone production that could not be completely reversed by addition of exogenous lipoprotein cholesterol. We conclude that seipin has a heretofore unappreciated role in intracellular cholesterol trafficking.  相似文献   

4.
Binns D  Lee S  Hilton CL  Jiang QX  Goodman JM 《Biochemistry》2010,49(50):10747-10755
Seipin is a transmembrane protein that resides in the endoplasmic reticulum and concentrates at junctions between the ER and cytosolic lipid droplets. Mutations in the human seipin gene, including the missense mutation A212P, lead to congenital generalized lipodystrophy (CGL), characterized by the lack of normal adipose tissue and accumulation of fat in liver and muscles. In both yeast and CGL patient fibroblasts, seipin is required for normal lipid droplet morphology; in its absence droplets appear to bud abnormally from the ER. Here we report the first purification and physical characterization of seipin. Yeast seipin is in a large discrete protein complex. Affinity purification demonstrated that seipin is the main if not exclusive protein in the complex. Detergent sucrose gradients in H(2)O, and D(2)O and gel filtration were used to determine the size of the seipin complex and account for detergent binding. Both seipin-myc13 (seipin fused to 13 tandem copies of the myc epitope) expressed from the endogenous promoter and overexpressed seipin-mCherry form ~500 kDa proteins consisting of about 9 copies of seipin. The yeast orthologue of the human A212P allele forms only smaller complexes and is unstable; we hypothesize that this accounts for its null phenotype in humans. Seipin appears as a toroid by negative staining electron microscopy. We speculate that seipin plays at least a structural role in organizing droplets or in communication between droplets and ER.  相似文献   

5.
The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin has been implicated in adipocyte differentiation, lipid droplet (LD) formation, and motor neuron development. However, the molecular function of seipin and its disease-causing mutants remains to be elucidated. Here, we characterize seipin and its mis-sense mutants: N88S/S90L (both linked to motoneuron disorders) and A212P (linked to lipodystrophy) in cultured mammalian cells. Knocking down seipin significantly increases oleate incorporation into triacylglycerol (TAG) and the steady state level of TAG, and induces the proliferation and clustering of small LDs. By contrast, overexpression of seipin reduces TAG synthesis, leading to decreased formation of LDs. Expression of the A212P mutant, however, had little effect on LD biogenesis. Surprisingly, expression of N88S or S90L causes the formation of many small LDs reminiscent of seipin deficient cells. This dominant-negative effect may be due to the N88S/S90L-induced formation of inclusions where wild-type seipin can be trapped. Importantly, coexpression of wild-type seipin and the N88S or S90L mutant can significantly reduce the formation of inclusions. Finally, we demonstrate that seipin can interact with itself and its mutant forms. Our results provide important insights into the biochemical characteristics of seipin and its mis-sense mutants, and suggest that seipin may function to inhibit lipogenesis.  相似文献   

6.
Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare recessive disease characterized by near absence of adipose tissue and severe insulin resistance. In most cases, BSCL is due to loss-of-function mutations in the genes encoding either seipin of unknown function or 1-acyl-glycerol-3-phosphate O-acyltransferase 2 (AGPAT2) which catalyses the formation of phosphatidic acid from lysophosphatidic acid. We studied the lipid profile of lymphoblastoid cell-lines from 20 BSCL patients with null mutations in the genes encoding either seipin (n = 12) or AGPAT2 (n = 8) in comparison to nine control cell-lines. In seipin deficient cells, we observed alterations in the pattern of lipid droplets which were decreased in size and increased in number as compared to control cells. We also observed alterations in the triglycerides content as well as in the fatty acid composition from triglycerides and phosphatidylethanolamine, with an increased proportion of saturated fatty acids at the expense of the corresponding monounsaturated fatty acids, reflecting a defect in Δ9-desaturase activity. In AGPAT2 deficient cells, no specific alterations in lipid droplet pattern nor in fatty acid composition was observed but the cellular level of lysophosphatidic acid was increased as compared to that of control and seipin deficient cells. These results indicate that seipin like AGPAT2 is involved in lipid metabolism but exerts a different function. Seipin intervenes at a proximal step in triglycerides and phospholipids biosynthesis being involved in the pathway that links fatty acid Δ9 desaturation to lipid droplet formation. These findings provide new insights into how seipin deficiency causes severe lipodystrophy.  相似文献   

7.
Cidea, the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) domain-containing protein, is targeted to lipid droplets in mouse adipocytes, where it inhibits triglyceride hydrolysis and promotes lipid storage. In mice, Cidea may prevent lipolysis by binding and shielding lipid droplets from lipase association. Here we demonstrate that human Cidea localizes with lipid droplets in both adipocyte and nonadipocyte cell lines, and we ascribe specific functions to its protein domains. Expression of full-length Cidea in undifferentiated 3T3-L1 cells or COS-1 cells increases total cellular triglyceride and strikingly alters the morphology of lipid droplets by enhancing their size and reducing their number. Remarkably, both lipid droplet binding and increased triglyceride accumulation are also elicited by expression of only the carboxy-terminal 104 amino acids, indicating this small domain directs lipid droplet targeting and triglyceride shielding. However, unlike the full-length protein, expression of the carboxy-terminus causes clustering of small lipid droplets but not the formation of large droplets, identifying a novel function of the N terminus. Furthermore, human Cidea promotes lipid storage via lipolysis inhibition, as the expression of human Cidea in fully differentiated 3T3-L1 adipocytes causes a significant decrease in basal glycerol release. Taken together, these data indicate that the carboxy-terminal domain of Cidea directs lipid droplet targeting, lipid droplet clustering, and triglyceride accumulation, whereas the amino terminal domain is required for Cidea-mediated development of enlarged lipid droplets.  相似文献   

8.
Seipin is a disk-like oligomeric endoplasmic reticulum (ER) protein important for lipid droplet (LD) biogenesis and triacylglycerol (TAG) delivery to growing LDs. Here we show through biomolecular simulations bridged to experiments that seipin can trap TAGs in the ER bilayer via the luminal hydrophobic helices of the protomers delineating the inner opening of the seipin disk. This promotes the nanoscale sequestration of TAGs at a concentration that by itself is insufficient to induce TAG clustering in a lipid membrane. We identify Ser166 in the α3 helix as a favored TAG occupancy site and show that mutating it compromises the ability of seipin complexes to sequester TAG in silico and to promote TAG transfer to LDs in cells. While the S166D-seipin mutant colocalizes poorly with promethin, the association of nascent wild-type seipin complexes with promethin is promoted by TAGs. Together, these results suggest that seipin traps TAGs via its luminal hydrophobic helices, serving as a catalyst for seeding the TAG cluster from dissolved monomers inside the seipin ring, thereby generating a favorable promethin binding interface.

A combination of biomolecular simulations and experiments reveals that the disc-like oligomeric lipodystrophy protein seipin interacts with and traps triglycerides in the endoplasmic reticulum, thus facilitating the formation and growth of lipid droplets.  相似文献   

9.
Both the endoplasmic reticulum (ER) and lipid droplets (LDs) are key players in lipid handling. In addition to this functional connection, the two organelles are also tightly linked due to the fact that the ER is the birthplace of LDs. LDs have an atypical architecture, consisting of a neutral lipid core that is covered by a phospholipid monolayer. LD biogenesis starts with neutral lipid synthesis in the ER membrane and formation of small neutral lipid lenses between its leaflets, followed by budding of mature LDs toward the cytosol.Several ER proteins have been identified that are required for efficient LD formation, among them seipin, Pex30, and FIT2. Recent evidence indicates that these LD biogenesis factors might cooperate with specific lipids, thus generating ER subdomains optimized for LD assembly. Intriguingly, LD biogenesis reacts dynamically to nutrient stress, resulting in a spatial reorganization of LD formation in the ER.  相似文献   

10.
Fatty acid desaturation regulates membrane function and fat storage in animals. To determine the contribution of stearoyl-CoA desaturase (SCD) activity on fat storage and development in the nematode Caenorhabditis elegans, we analyzed the lipid composition and lipid droplet size in the fat-6;fat-7 desaturase mutants independently and in combination with mutants disrupted in conserved lipid metabolic pathways. C. elegans with impaired SCD activity displayed both reduced fat stores and decreased lipid droplet size. Mutants in the daf-2 (insulin-like growth factor receptor), rsks-1 (homolog of p70S6kinase, an effector of the target of rapamycin signaling pathway), and daf-7 (transforming growth factor β) displayed high fat stores, the opposite of the low fat observed in the fat-6;fat-7 desaturase mutants. The metabolic mutants in combination with fat-6;fat-7 displayed low fat stores, with the exception of the daf-2;fat-6;fat-7 triple mutants, which had increased de novo fatty acid synthesis and wild-type levels of fat stores. Notably, SCD activity is required for the formation of large-sized lipid droplets in all mutant backgrounds, as well as for normal ratios of phosphatidylcholine (PC) to phosphatidylethanolamine (PE). These studies reveal previously uncharacterized roles for SCD in the regulation of lipid droplet size and membrane phospholipid composition.  相似文献   

11.
The size of lipid droplets varies greatly in vivo and is determined by both intrinsic and extrinsic factors. From an RNAi screen in Drosophila, we found that knocking down subunits of COP9 signalosome (CSN) results in enlarged lipid droplets under high‐fat, but not normal, conditions. We identified CG2064, a retinol dehydrogenase (RDH) homolog, as the proteasomal degradation target of CSN in regulating lipid droplet size. RDH/CG2064 interacts with the lipid droplet‐resident protein Plin2 and the RDH/CG2064‐Plin2 axis acts to reduce the overall level and lipid droplet localization of Bmm/ATGL lipase. This axis is important for larval survival under prolonged starvation. Thus, we discovered an RDH‐Plin2 axis modulates lipid droplet size.  相似文献   

12.
Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets.  相似文献   

13.
Jambunathan S  Yin J  Khan W  Tamori Y  Puri V 《PloS one》2011,6(12):e28614
Fat Specific Protein 27 (FSP27), a lipid droplet (LD) associated protein in adipocytes, regulates triglyceride (TG) storage. In the present study we demonstrate that FSP27 plays a key role in LD morphology to accumulate TGs. We show here that FSP27 promotes clustering of the LDs which is followed by their fusion into fewer and enlarged droplets. To map the domains of FSP27 responsible for these events, we generated GFP-fusion constructs of deletion mutants of FSP27. Microscopic analysis revealed that amino acids 173-220 of FSP27 are necessary and sufficient for both the targeting of FSP27 to LDs and the initial clustering of the droplets. Amino acids 120-140 are essential but not sufficient for LD enlargement, whereas amino acids 120-210 are necessary and sufficient for both clustering and fusion of LDs to form enlarged droplets. In addition, we found that FSP27-mediated enlargement of LDs, but not their clustering, is associated with triglyceride accumulation. These results suggest a model in which FSP27 facilitates LD clustering and then promotes their fusion to form enlarged droplets in two discrete, sequential steps, and a subsequent triglyceride accumulation.  相似文献   

14.
The PAT family proteins, named after perilipin, adipophilin, and the tail-interacting protein of 47 kDa (TIP47), are implicated in intracellular lipid metabolism. They associate with lipid droplets, but how is completely unclear. From immunofluorescence studies, they are reported to be restricted to the outer membrane monolayer enveloping the lipid droplet and not to enter the core. Recently, we found another kind of lipid droplet-associated protein, caveolin-1, inside lipid droplets. Using freeze-fracture immunocytochemistry and electron microscopy, we now describe the distributions of perilipin and caveolin-1 and of adipophilin and TIP47 in lipid droplets of adipocytes and macrophages. All of these lipid droplet-associated proteins pervade the lipid droplet core and hence are not restricted to the droplet surface. Moreover, lipid droplets are surprisingly heterogeneous with respect to their complements and their distribution of lipid droplet-associated proteins. Whereas caveolin-1 is synthesized in the endoplasmic reticulum and is transferred to the lipid droplet core by inundating lipids during droplet budding, the PAT proteins, which are synthesized on free ribosomes in the cytoplasm, evidently target to the lipid droplet after it has formed. How the polar lipid droplet-associated proteins are accommodated among the essentially hydrophobic neutral lipids of the lipid droplet core remains to be determined.  相似文献   

15.
Nuclear lipid droplets (LDs) in hepatocytes are derived from precursors of very-low-density lipoprotein in the ER lumen, but it is not known how cells lacking the lipoprotein secretory function form nuclear LDs. Here, we show that the inner nuclear membrane (INM) of U2OS cells harbors triglyceride synthesis enzymes, including ACSL3, AGPAT2, GPAT3/GPAT4, and DGAT1/DGAT2, and generates nuclear LDs in situ. mTOR inhibition increases nuclear LDs by inducing the nuclear translocation of lipin-1 phosphatidic acid (PA) phosphatase. Seipin, a protein essential for normal cytoplasmic LD formation in the ER, is absent in the INM. Knockdown of seipin increases nuclear LDs and PA in the nucleus, whereas seipin overexpression decreases these. Seipin knockdown also up-regulates lipin-1β expression, and lipin-1 knockdown decreases the effect of seipin knockdown on nuclear LDs without affecting PA redistribution. These results indicate that seipin is not directly involved in nuclear LD formation but instead restrains it by affecting lipin-1 expression and intracellular PA distribution.  相似文献   

16.
Cytoplasmic lipid droplets (LDs) are evolutionarily conserved organelles that store neutral lipids and play critical roles in plant growth, development, and stress responses. However, the molecular mechanisms underlying their biogenesis at the endoplasmic reticulum (ER) remain obscure. Here we show that a recently identified protein termed LD-associated protein [LDAP]-interacting protein (LDIP) works together with both endoplasmic reticulum-localized SEIPIN and the LD-coat protein LDAP to facilitate LD formation in Arabidopsis thaliana. Heterologous expression in insect cells demonstrated that LDAP is required for the targeting of LDIP to the LD surface, and both proteins are required for the production of normal numbers and sizes of LDs in plant cells. LDIP also interacts with SEIPIN via a conserved hydrophobic helix in SEIPIN and LDIP functions together with SEIPIN to modulate LD numbers and sizes in plants. Further, the co-expression of both proteins is required to restore normal LD production in SEIPIN-deficient yeast cells. These data, combined with the analogous function of LDIP to a mammalian protein called LD Assembly Factor 1, are discussed in the context of a new model for LD biogenesis in plant cells with evolutionary connections to LD biogenesis in other eukaryotes.

The lipid droplet (LD) proteins LDIP and LDAP cooperate with endoplasmic reticulum-localized SEIPIN to coordinate LD formation in plant cells.  相似文献   

17.
Lipid droplets are ubiquitous cellular compartments that store neutral lipids and specific proteins localize on their surface. These proteins work as a scaffold in maintaining the lipid droplet structure or as regulators of lipogenesis or lipolysis. Previously, the most abundant lipid droplet protein, namely stramenopile-type lipid droplet protein (StLDP), was identified in the marine diatom Phaeodactylum tricornutum; however, its function remains unclear because StLDP does not reveal homology with known lipid droplet proteins and lacks a predictable domain. In this study, P. tricornutum was transformed to express a homologous StLDP gene under an fcpA promoter in order to determine its function. StLDP expression was strongly enhanced in the mutant (H8), especially in nitrogen-sufficient conditions; however, it was attenuated in nitrogen-deficient conditions. Despite the strong expression, no significant difference was observed in the lipid composition between the wild type (WT) and H8 under nitrogen-sufficient conditions. After cultivation in nitrogen-free medium for 6 days, neutral lipid content significantly increased in H8 than in WT. After 2 days of cultivation in nitrogen-free medium, 97.0% of single cells in WT formed one or two lipid droplets, whereas in H8, this proportion decreased to 78.8%, and the proportion of cells forming three or four lipid droplets increased. Thus, the function of StLDP was speculated to sequester triacylglycerol on the initial lipid droplet formation.  相似文献   

18.
Eukaryotic cells store lipids in cytosolic organelles known as lipid droplets (LDs). Lipid droplet bud from the endoplasmic reticulum (ER), and may be harvested by the vacuole for energy during prolonged periods of starvation. How cells spatially coordinate LD production is poorly understood. Here, we demonstrate that yeast ER–vacuole contact sites (NVJs) physically expand in response to metabolic stress, and serve as sites for LD production. NVJ tether Mdm1 demarcates sites of LD budding, and interacts with fatty acyl‐CoA synthases at the NVJ periphery. Artificially expanding the NVJ through over‐expressing Mdm1 is sufficient to drive NVJ‐associated LD production, whereas ablating the NVJ induces defects in fatty acid‐to‐triglyceride production. Collectively, our data suggest a tight metabolic link between nutritional stress and LD biogenesis that is spatially coordinated at ER–vacuole contact sites.  相似文献   

19.
The most-severe form of congenital generalized lipodystrophy (CGL) is caused by mutations in BSCL2/seipin. Seipin is a homo-oligomeric integral membrane protein in the endoplasmic reticulum that concentrates at junctions with cytoplasmic lipid droplets (LDs). While null mutations in seipin are responsible for lipodystrophy, dominant mutations cause peripheral neuropathy and other nervous system pathologies. We first review the clinical aspects of CGL and the discovery of the responsible genetic loci. The structure of seipin, its normal isoforms, and mutations found in patients are then presented. While the function of seipin is not clear, seipin gene manipulation in yeast, flies, mice, and human cells has recently yielded a trove of information that suggests roles in lipid metabolism and LD assembly and maintenance. A model is presented that attempts to bridge these new data to understand the role of this fascinating protein.  相似文献   

20.
Nearly all cell types have the ability to store excess energy as triglycerides in specialized organelles called lipid droplets. The formation and degradation of lipid droplets is governed by a diverse set of enzymes and lipid droplet-associated proteins. One of the lipid droplet-associated proteins is Hypoxia Inducible Lipid Droplet Associated (HILPDA). HILPDA was originally discovered in a screen to identify novel hypoxia-inducible proteins. Apart from hypoxia, levels of HILPDA are induced by fatty acids and adrenergic agonists. HILPDA is a small protein of 63 amino acids in humans and 64 amino acids in mice. Inside cells, HILPDA is located in the endoplasmic reticulum and around lipid droplets. Gain- and loss-of-function experiments have demonstrated that HILPDA promotes lipid storage in hepatocytes, macrophages and cancer cells. HILPDA increases lipid droplet accumulation at least partly by inhibiting triglyceride hydrolysis via ATGL and stimulating triglyceride synthesis via DGAT1. Overall, HILPDA is a novel regulatory signal that adjusts triglyceride storage and the intracellular availability of fatty acids to the external fatty acid supply and the capacity for oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号