首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fitness of hybrids might be compromised as a result of intrinsic isolation and/or because they fall between ecological niches due to their intermediate phenotypes (“extrinsic isolation”). Here, we present data from several crosses (parental crosses, F1, F2, and backcrosses) between the two host races of Lochmaea capreae on willow and birch to test for extrinsic isolation, intrinsic isolation, and environmentally dependent genetic incompatibilities. We employed a reciprocal transplant design in which offspring were raised on either host plant and their survival was recorded until adulthood. We also applied joint‐scaling analysis to determine the genetic architecture of hybrid inviability. The relative fitness of the backcrosses switched between environments; furthermore, the additive genetic–environment interaction was detected as the strongest effect in our analysis. These results provide strong evidence that divergent natural selection has played a central role in the evolution of hybrid dysfunction between host races. Joint‐scaling analysis detected significant negative epistatic effects that are most evident in the poor performance of F2‐hybrids on willow, indicating signs of intrinsic isolation. We did not find any evidence that genetic incompatibilities are manifested independently of environmental conditions. Our findings suggest the outcome of natural hybridization between these host races is mainly affected by extrinsic isolation and a weak contribution of intrinsic isolation.  相似文献   

2.
Ecological specialization is widely recognized as a major determinant of the emergence and maintenance of biodiversity. We studied two critical facets of specialization – local adaptation and habitat choice – in the host races of the leaf beetle Lochmaea capreae on willow and birch. Our results revealed that there is asymmetric disruptive selection for host use traits, and host races achieved different adaptive sets of life history traits through association with their host plant. Beetles from each host race exhibited food and oviposition preference for their own host plant. Reciprocal transplant displayed significant variation in host acceptance and performance: all families from the willow race rejected the alternative host plant before initiation of feeding and all died on this host plant. By contrast, all families from the birch race accepted willow for feeding, but they consumed less and performed less well. Intriguingly, families that performed well on birch also performed well on willow, suggesting positive genetic correlation rather than genetic trade‐offs. Our results suggest that the major proximal determinant of host specialization in the willow race is the behavioural acceptance of a plant rather than the toxicity of the food resource. However, in the birch race a combination of behavioural host acceptance and performance may play a role in specialization. Our study sheds light on the mechanisms by which divergent host adaptation might influence the evolution of reproductive isolation between herbivorous populations.  相似文献   

3.
4.
Two morphs (ecotypes) of the marine snail Littorina saxatilis coexist along Galician exposed rocky shores. They hybridize, but gene flow is impeded by a partial prezygotic reproductive barrier, and we have earlier suggested that this is a case of incipient sympatric speciation. To assess the mechanisms of prezygotic reproductive isolation, we estimated deviations from random mating (sexual selection and sexual isolation) of sympatric snails in 13 localities on the shore, and performed mate choice experiments in the laboratory. We also investigated the microdistribution of both morphs over patches of barnacles and blue mussels in the hybridization zone. We used computer simulations to separate the mechanisms contributing to reproductive isolation. On the shores sampled, male–female pairs were strongly assortative both with respect to morphs (mean Yule's V = 0.77) and size (mean Pearson's r = 0.47). In the laboratory, males of both morphs mounted other snails and mated other males and juveniles at random. However, mature females of equal sizes mated assortatively with respect to morph. The two morphs were nonrandomly distributed over barnacle and mussel patches in the hybridization zone. Monte Carlo simulations showed that this microdistribution could explain about half the morph and size relationships in male–female pairs, while a simple rejection mechanism, rejecting the first 1–3 mates if they were of contrasting morphs, accounted for the remaining part of the reproductive isolation, and for parts of the size relationships found between mates. A size discriminant mate choice mechanism may also, to a lesser extent, contribute to the sexual isolation. Sexual selection was observed for female size (larger ones being favoured) and among certain morphs, but distinct biological mechanisms may cause these processes.  相似文献   

5.
Studying reproductive barriers between populations of the same species is critical to understand how speciation may proceed. Growing evidence suggests postmating, prezygotic (PMPZ) reproductive barriers play an important role in the evolution of early taxonomic divergence. However, the contribution of PMPZ isolation to speciation is typically studied between species in which barriers that maintain isolation may not be those that contributed to reduced gene flow between populations. Moreover, in internally fertilizing animals, PMPZ isolation is related to male ejaculate—female reproductive tract incompatibilities but few studies have examined how mating history of the sexes can affect the strength of PMPZ isolation and the extent to which PMPZ isolation is repeatable or restricted to particular interacting genotypes. We addressed these outstanding questions using multiple populations of Drosophila montana. We show a recurrent pattern of PMPZ isolation, with flies from one population exhibiting reproductive incompatibility in crosses with all three other populations, while those three populations were fully fertile with each other. Reproductive incompatibility is due to lack of fertilization and is asymmetrical, affecting female fitness more than males. There was no effect of male or female mating history on reproductive incompatibility, indicating that PMPZ isolation persists between populations. We found no evidence of variability in fertilization outcomes attributable to different female × male genotype interactions, and in combination with our other results, suggests that PMPZ isolation is not driven by idiosyncratic genotype × genotype interactions. Our results show PMPZ isolation as a strong, consistent barrier to gene flow early during speciation and suggest several targets of selection known to affect ejaculate‐female reproductive tract interactions within species that may cause this PMPZ isolation.  相似文献   

6.
A deterministic genetic model for sympatric speciation by sexual selection   总被引:4,自引:0,他引:4  
A deterministic haploid genetic model confirms and explores in more detail the results of our previous individual-based simulation model for sympatric speciation by sexual selection. With the deterministic model, we are able to elucidate parameter dependence by phase plane analysis. We clarify how and why sympatric speciation by sexual selection can happen in a number of ways: (1) Female preferences for or against particular types of males have different effects. Whereas the former affects how readily speciation is invoked, the latter changes the stability of speciation equilibrium. (2) When there is no cost on male ornamentations, speciation is triggered regardless of initial haplotype frequencies if sufficient female preference is provided. (3) There exists a threshold for female initial frequencies for speciation to be invoked, but male initial frequencies have little effect. (4) A small cost on female mate choice does not cancel speciation, but when large, it greatly reduces the possibility of speciation.  相似文献   

7.
Ecological divergence can cause speciation if adaptive traits have pleiotropic effects on mate choice. In Heliconius butterflies, mimetic patterns play a role in mate detection between sister species, as well as signalling to predators. Here we show that male butterflies from four recently diverged parapatric populations of Heliconius melpomene are more likely to approach and court their own colour patterns as compared with those of other races. A few exceptions, where males were more attracted to patterns other than their own, suggest that some mimetic patterns are sub-optimal in mate choice. Genotype frequencies in hybrid zones between races of H. melpomene suggest that mating is random, so reinforcement is unlikely to have played a role in intra-specific divergence. In summary, co-evolved divergence of colour pattern and mate preference occurs rapidly and is likely the first step in Heliconius speciation.  相似文献   

8.
Divergent host preference (i.e. host fidelity) plays a significant role in the speciation process in phytophagous insects. However, how and to what extent this divergence reduces gene flow between populations has rarely been measured. Here, we estimated the intensity of assortative mating caused solely by host fidelity in two host races of the phytophagous ladybird beetle Henosepilachna diekei, specialized on Mikania micrantha (Asteraceae) and Leucas lavandulifolia (Lamiaceae) in West Java, Indonesia. These host races mated randomly in the absence of host plants under laboratory conditions, but demonstrated nearly complete assortative mating in field cages with the two host plants, by spending almost all of their time on their respective host plants. The frequency of assortative mating in the field cages was not affected drastically by host plant patch structure. These results suggest that fidelity to the different host plants yields directly almost complete reproductive isolation between the host races by limiting the habitat on the respective host plant. In addition, the high host fidelity also ensures female oviposition on the original host plant. As larvae cannot survive on non‐host plants, a positive association between female oviposition preference and larval performance on the host plant on which the beetles are specialized will further facilitate the evolution of host fidelity. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 606–614.  相似文献   

9.
Ecological divergence alone can prevent the majority of gene flow in the absence of other forms of reproductive isolation. Although the importance of ecological divergence in promoting reproductive isolation has been broadly recognized, its net impact on speciation has rarely been estimated in the wild. The phytophagous ladybird beetle Henosepilachna diekei Jadwiszczak & Wegrzynowicz includes two sympatric host races that are reproductively isolated solely by extreme specialization to either of the host plants Mikania micrantha Kunth (Asteraceae) or Leucas lavandulifolia Sm. (Lamiaceae) in West Java, Indonesia. To investigate the impact of differential host use as an isolating barrier, we carried out adult host acceptance tests and molecular population genetic analyses based on mitochondrial ND2 and nucleic ITS2 gene sequences using 13 wild populations of the host races, including four sympatric population pairs. Almost all individuals of these host races persistently accepted only the original host plant. We detected restricted but a degree of gene flow between these host races. A migration event occurred only in very recent time compared to their divergence time, indicating recent secondary contact of these host races in the surveyed area. These results reveal the remarkably large impact of host‐plant shift over almost the entire process of speciation and illustrate that ecological divergence has been maintained even under the presence of a certain degree of gene flow.  相似文献   

10.
Mate choice may play an important role in animal speciation. The haplochromine cichlids of Lake Victoria are suitable to test this hypothesis. Diversity in ecology, coloration and anatomy evolved in these fish faster than postzygotic barriers to gene flow, and little is known about how this diversity is maintained. It was tested whether recognizable forms are selection-maintained morphs or reproductively isolated species by investigating in the field reproductive timing, location of spawning sites, and mate choice behaviour. There was a large interspecific overlap in timing of breeding and location of spawning sites, which was largest in members of the same genus. Behavioural mate choice of such closely related taxa was highly assortative, such that it is likely that they are sexually isolated species and that direct mate choice is the major force that directs gene flow and maintains form diversity. The results differ from what is known about recent radiations of other lacustrine fish groups where speciation seems to be driven by diverging microhabitat preferences or diverging timing of reproduction, but are in agreement with predictions from models of speciation by diverging mate preferences.  相似文献   

11.
The threespine stickleback ( Gasterosteus aculeatus ) species complex is well suited for identifying the types of phenotypic divergence and isolating barriers that contribute to reproductive isolation at early stages of speciation. In the present study, we characterize the patterns of genetic and phenotypic divergence as well as the types of isolating barriers that are present between two sympatric pairs of threespine sticklebacks in Hokkaido, Japan. One sympatric pair consists of an anadromous and a resident freshwater form and shows divergence in body size between the forms, despite the lack of genetic differentiation between them. The second sympatric pair consists of two anadromous forms, which originated before the last glacial period and are currently reproductively isolated. These two anadromous forms have diverged in many morphological traits as well as in their reproductive behaviours. Both sexual isolation and hybrid male sterility contribute to reproductive isolation between the anadromous species pair. We discuss the shared and unique aspects of phenotypic divergence and reproductive isolation in the Japanese sympatric pairs compared with postglacial stickleback species pairs. Further studies of these divergent species pairs will provide a deeper understanding of the mechanisms of speciation in sticklebacks.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 671–685.  相似文献   

12.
Maladaptive sexual interactions among heterospecific individuals (sexual interference) can prevent the coexistence of animal species. Thus, the avoidance of sexual interference by divergence of mate recognition systems is crucial for a stable coexistence in sympatry. Mate recognition systems are thought to be under tight genetic control. However, we demonstrate that mate recognition systems of two closely related sympatric leaf beetle species show a high level of host‐induced phenotypic plasticity. Mate choice in the mustard leaf beetles, Phaedon cochleariae and P. armoraciae, is mediated by cuticular hydrocarbons (CHCs). Divergent host plant use causes a divergence of CHC phenotypes, whereas similar host use leads to their convergence. Consequently, both species exhibit significant behavioral isolation when they feed on alternative host species, but mate randomly when using a common host. Thus, sexual interference between these syntopic leaf beetles is prevented by host‐induced phenotypic plasticity rather than by genotypic divergence of mate recognition systems.  相似文献   

13.
14.
15.
Reproductive character displacement is the adaptive evolution of traits that minimize deleterious reproductive interactions between species. When arising from selection to avoid hybridization, this process is referred to as reinforcement. Reproductive character displacement generates divergence not only between interacting species, but also between conspecific populations that are sympatric with heterospecifics versus those that are allopatric. Consequently, such conspecific populations can become reproductively isolated. We compared female mate preferences in, and evaluated gene flow between, neighbouring populations of spadefoot toads that did and did not occur with heterospecifics (mixed- and pure-species populations, respectively). We found that in mixed-species populations females significantly preferred conspecifics. Such females also tended to prefer a conspecific call character that was dissimilar from heterospecifics. By contrast, females from pure-species populations did not discriminate conspecific from heterospecific calls. They also preferred a more exaggerated conspecific call character that resembles heterospecific males. Moreover, gene flow was significantly reduced between mixed- and pure-species population types. Thus, character displacement (and, more specifically, reinforcement) may initiate reproductive isolation between conspecific populations that differ in interactions with heterospecifics.  相似文献   

16.
Mate searching is assumed to be performed mostly by males, but when females benefit from multiple mating or are under risk of failing to mate, they may also perform mate searching. This is especially important in scramble competition polygynies, in which mate searching is the main mechanism of mate competition. Typically, more mobile individuals are expected to achieve higher mating success because mobility increases their probability of finding mates. If we assume individual movements are mainly explained by mate searching in scramble competition polygynies, we can investigate searching strategies by asking when individuals should leave their location and where they should go. We hypothesize that individuals will leave their locations when mating opportunities are scarce and will seek spatially close sites with better mating opportunities. We tested these hypotheses for males and females of Leptinotarsa undecimlineata, a leaf beetle with scramble competition polygyny in which both sexes are promiscuous. Individuals mate and feed exclusively on Solanum plants, and thus, individual movements can be described as switches between plants. Females were less likely than males to leave isolated plants, and both males and females moved preferentially to neighboring plants. Males were more likely to leave when the local number of females was low, and the number of males was high. They moved to plants with more females, a behavior consistent with a mate searching strategy. Females were more likely to move to plants with fewer males and many females, a behavior consistent with male harassment avoidance. Strategic movement is widely considered in foraging context, but seldom in a mate searching context. Considering that selection to minimize searching costs, maximize mating success, and minimize harassment may be ubiquitous in nature, we argue that strategic movements by mate searching individuals are likely to occur in many species.  相似文献   

17.
Decades of theoretical work on the evolution of adaptive prezygotic isolation have led to an interesting finding—namely that stable partial reproductive isolation is a relatively common outcome. This conclusion is generally lost, however, in the desire to pinpoint when exactly speciation occurs. Here, we argue that the evolution of partial reproductive isolation is of great interest in its own right and matches empirical findings that ongoing hybridization is taxonomically widespread. We present the mechanisms by which partial reproductive isolation can be a stable evolutionary endpoint, concentrating on insights from theoretical studies. We focus not on cases in which hybridization results from constraints imposed by ongoing migration or mutation, but on the intriguing idea that partial reproductive isolation may instead be an adaptive optimum. We identify three general categories of selective mechanisms that can lead to partial reproductive isolation: context-dependent hybrid advantage, indirect selection due to the varying actions of sexual selection in different geographic contexts, and a balance of costs of choosiness with indirect selection for stronger mating preferences. By any of these mechanisms, stable partial reproductive isolation can potentially provide a robust evolutionary alternative to either complete speciation or population fusion.  相似文献   

18.
The chances for sympatric speciation are improved if ecological divergence leads to assortative mating as a by-product. This effect is known in parasites that find mates using host cues, but studies of larch- and pine-feeding races of the larch budmoth (Zeiraphera diniana, Lepidoptera: Tortricidae) suggest it may also occur when mate attraction is via sex pheromones that are independent of habitat. We have previously shown that females releasing pheromones on or near their own host attract more males of their own race than if placed on the alternative host. This host effect would enhance assortative mating provided adults preferentially alight on their native hosts. Here we investigate alighting preferences in natural mixed forest using a novel likelihood analysis of genotypic clusters based on three semidiagnostic allozyme loci. Both larch and pine females show a realized alighting preference for their own host of 86%. The equivalent preferences of males were 79% for the larch race and 85% for the pine race. These preferences are also detectable in small-scale laboratory experiments, where alighting preferences of larch and pine races towards their own hosts were, respectively, 67 and 66% in females and 69 and 63% in males. Pure larch race moths reared in the laboratory had alighting choice similar to moths from natural populations, while hybrids were intermediate, showing that alighting preferences were heritable and approximately additive. The field estimates of alighting preference, coupled with earlier work on mate choice, yield an estimated rate of natural hybridization between sympatric host races of 2.2-3.8% per generation. Divergent alighting choice enhances pheromone-mediated assortative mating today, and is likely to have been an important cause of assortative mating during initial divergence in host use. Because resources are normally 'coarse-grained' in space and time, assortative mating due to ecological divergence may be a more important catalyst of sympatric speciation than generally realized.  相似文献   

19.
Postmating but prezygotic (PMPZ) interactions are increasingly recognized as a potentially important early‐stage barrier in the evolution of reproductive isolation. A recent study described a potential example between populations of the same species: single matings between Drosophila montana populations resulted in differential fertilisation success because of the inability of sperm from one population (Vancouver) to penetrate the eggs of the other population (Colorado). As the natural mating system of D. montana is polyandrous (females remate rapidly), we set up double matings of all possible crosses between the same populations to test whether competitive effects between ejaculates influence this PMPZ isolation. We measured premating isolation in no‐choice tests, female fecundity, fertility and egg‐to‐adult viability after single and double matings as well as second‐male paternity success (P2). Surprisingly, we found no PMPZ reproductive isolation between the two populations under a competitive setting, indicating no difficulty of sperm from Vancouver males to fertilize Colorado eggs after double matings. While there were subtle differences in how P2 changed over time, suggesting that Vancouver males’ sperm are somewhat less competitive in a first‐male role within Colorado females, these effects did not translate into differences in overall P2. Fertilisation success can thus differ dramatically between competitive and noncompetitive conditions, perhaps because the males that mate second produce higher quality ejaculates in response to sperm competition. We suggest that unlike in more divergent species comparisons, where sperm competition typically increases reproductive isolation, ejaculate tailoring can reduce the potential for PMPZ isolation when recently diverged populations interbreed.  相似文献   

20.
Mendelson TC  Shaw KL 《Genetica》2002,116(2-3):301-310
Cryptic species are often hypothesized on the basis of differences in courtship signals. These signal differences suggest that mate recognition systems, which include both courtship signals and responses to those signals, have diverged between genetically isolated populations. Cryptic species are therefore thought to represent distinct genetic units, the boundaries of which are maintained by premating incompatibilities, specifically by receiver preferences for conspecific signals. Laupala cerasina and L. kohalensis are sympatric species of swordtail crickets endemic to the big island of Hawaii, that are distinguishable by differences in male courtship song. We first tested whether groupings hypothesized by acoustic similarity reflect genetic groupings, using AFLP data to estimate genetic relationships. Second, we tested whether genetic boundaries are maintained by female preferences for conspecific song characteristics. Phonotaxis trials were used to determine the extent of female preferences for conspecific male song. Results generally support both hypotheses, but suggest the presence of porous species boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号