首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
There is increased concern about the effects of sleep deprivation on physician performance. We administered four standard tests of cognitive function to 23 university hospital house staff. Each physician served as his or her own control, and the tests were administered at rest, after a night on call, and after a night of sleep for recovery. The study was designed so that normal learning would minimize any deterioration in the post-on-call test performance. Statistically significant deterioration occurred in 3 of the 4 tests after a night on call. Even physicians acclimated to sleep deprivation on a regular, every-third-or-fourth-night basis showed functional impairment. The results have implications for patient care under conditions where house staff are stressed by sleep deprivation and prolonged fatigue.  相似文献   

2.
The aim of this study was to determine the role played by vigilance on the anaerobic performance recorded during a Wingate test performed at the bathyphase (nadir) of the circadian rhythmicity. Twenty active male participants performed a 60-s Wingate test at 6 a.m. during 3 test sessions in counter-balanced order the day after either (i) a normal reference night, (ii) a total sleep deprivation night, or (iii) a total sleep deprivation night associated with an extended simulated driving task from 9 p.m. to 5 a.m. During this task, the number of inappropriate line crossings (ILCs) was used to control and quantify the effective decrease in the level of vigilance. The main findings show that (i) vigilance of each participant was significantly altered (i.e., a drastic and progressive increase in ILCs is shown during the 7.5 hours of driving) by the sleep deprivation night associated with an extended driving task; (ii) the subjective evaluation of vigilance performed by self-rated scale revealed an increased impairment of the vigilance level between the normal reference night, the total sleep deprivation night and the total sleep deprivation night associated with an extended driving task; and (iii) the morning following this last condition, during the Wingate test, the recorded cycling biomechanical parameters (peak power, mean power and fatigue index values, power decrease, and cycling kinetic and kinematic patterns) were not significantly different from the two other conditions. Consequently, these results show that anaerobic performances recorded during a Wingate test performed at the bathyphase of the circadian rhythmicity are not altered by a drastic impairment in vigilance. These findings seem to indicate that vigilance is probably not a factor that contributes to circadian variations in anaerobic performance.  相似文献   

3.
Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3-5 am, 1-5 am and 9 pm-5 am) on open highway. Fourteen young healthy men (mean age [+/-SD] = 23.4 [+/-1.7] years) participated Inappropriate line crossings (ILC) in the last hour of driving of each session, sleep variables, self-perceived fatigue and sleepiness were measured. Compared to the short (3-5 am) driving session, the incidence rate ratio of inappropriate line crossings increased by 2.6 (95% CI, 1.1 to 6.0; P<.05) for the intermediate (1-5 am) driving session and by 4.0 (CI, 1.7 to 9.4; P<.001) for the long (9 pm-5 am) driving session. Compared to the reference session (9-10 pm), the incidence rate ratio of inappropriate line crossings were 6.0 (95% CI, 2.3 to 15.5; P<.001), 15.4 (CI, 4.6 to 51.5; P<.001) and 24.3 (CI, 7.4 to 79.5; P<.001), respectively, for the three different durations of driving. Self-rated fatigue and sleepiness scores were both positively correlated to driving impairment in the intermediate and long duration sessions (P<.05) and increased significantly during the nocturnal driving sessions compared to the reference session (P<.01). At night, extended driving impairs driving performances and therefore should be limited.  相似文献   

4.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5?h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean?±?SD: 35.7?±?7.2 and 32.5?±?6.2 yrs, respectively) and body mass index (BMI) (28.7?±?3.8 and 26.6?±?3.4?kg/m2, respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8?h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8?h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8?h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5?h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork. (Author correspondence: )  相似文献   

5.
Previous studies have shown increased sleepiness and mood changes in shiftworkers, which may be due to sleep deprivation or circadian disruption. Few studies, however, have compared responses of experienced shiftworkers and non-shiftworkers to sleep deprivation in an identical laboratory setting. The aim of this laboratory study, therefore, was to compare long-term shiftworkers and non-shiftworkers and to investigate the effects of one night of total sleep deprivation (30.5 h of continuous wakefulness) and recovery sleep on psychomotor vigilance, self-rated alertness, and mood. Eleven experienced male shiftworkers (shiftwork ≥5 yrs) were matched with 14 non-shiftworkers for age (mean ± SD: 35.7 ± 7.2 and 32.5 ± 6.2 yrs, respectively) and body mass index (BMI) (28.7 ± 3.8 and 26.6 ± 3.4 kg/m(2), respectively). After keeping a 7-d self-selected sleep/wake cycle (7.5/8 h nocturnal sleep), both groups entered a laboratory session consisting of a night of adaptation sleep and a baseline sleep (each 7.5/8 h), a sleep deprivation night, and recovery sleep (4-h nap plus 7.5/8 h nighttime sleep). Subjective alertness and mood were assessed with the Karolinska Sleepiness Scale (KSS) and 9-digit rating scales, and vigilance was measured by the visual psychomotor vigilance test (PVT). A mixed-model regression analysis was carried out on data collected every hour during the sleep deprivation night and on all days (except for the adaptation day), at .25, 4.25, 5.25, 11.5, 12.5, and 13.5 h after habitual wake-up time. Despite similar circadian phase (melatonin onset), demographics, food intake, body posture, and environmental light, shiftworkers felt significantly more alert, more cheerful, more elated, and calmer than non-shiftworkers throughout the laboratory study. In addition, shiftworkers showed a faster median reaction time (RT) compared to non-shiftworkers, although four other PVT parameters did not differ between the groups. As expected, both groups showed a decrease in subjective alertness and PVT performance during and following the sleep deprivation night. Subjective sleepiness and most aspects of PVT performance returned to baseline levels after a nap and recovery sleep. The mechanisms underlying the observed differences between shiftworkers and non-shiftworkers require further study, but may be related to the absence of shiftwork the week prior to and during the laboratory study as well as selection into and out of shiftwork.  相似文献   

6.
The changes in cardiac and ventilatory responses were measured in 7 endurance athletes during physical exercise on a bicycle ergometer, taking place after a control night and after a night with partial sleep deprivation in the middle of the night. The results show that, despite the maximal work load was not modified with control, heart rate, ventilation and VE/VO2 ratio (ERO2) were greater at the submaximal (75% of the VO2 max) and maximal work load and oxygen consumption decreased at maximal work, after the night of partial sleep deprivation as compared to the control. These findings suggest that acute sleep loss may contribute to alter the endurance performance by impairment of aerobic pathways.  相似文献   

7.
Total sleep deprivation in humans is associated with increased daytime sleepiness, decreased performance, elevations in inflammatory cytokines, and hormonal/metabolic disturbances.To assess the effects of 40 h of total sleep deprivation (TSD) under constant and well controlled conditions, on plasma levels of TNF-α and its receptor (TNFR1), interleukin-6 (IL-6), cortisol and C-reactive protein (CRP), sleepiness and performance, 12 healthy men (29 ± 3 years) participated in a 5-days sleep deprivation experiment (two control nights followed by a night of sleep loss and one recovery night). Between 0800 and 2300 (i.e. between 25 and 40 h of sleep deprivation), a serial of blood sampling, multiple sleep latency, subjective levels of sleepiness and reaction time tests were completed before (day 2: D2) and after (day 4: D4) one night of sleep loss. We showed that an acute sleep deprivation (i.e. after 34 and 37 h of sleep deprivation) induced a significant increase in TNF-α (P < 0.01), but there were no significant changes in TNFR1, IL-6, cortisol and CRP. In conclusion, our study in which constant and controlled experimental conditions were realized with healthy subjects and in absence of psychological or physical stressors, an acute total sleep deprivation (from 34 h) was sufficient to induce secretion of pro-inflammatory cytokine such as TNF-α, a marker more described in chronic sleep restriction or deprivation and as mediators of excessive sleepiness in humans in pathological conditions.  相似文献   

8.
Nathaniel Kleitman was the first to observe that sleep deprivation in humans did not eliminate the ability to perform neurobehavioral functions, but it did make it difficult to maintain stable performance for more than a few minutes. To investigate variability in performance as a function of sleep deprivation, n = 13 subjects were tested every 2 hours on a 10-minute, sustained-attention, psychomotor vigilance task (PVT) throughout 88 hours of total sleep deprivation (TSD condition), and compared to a control group of n = 15 subjects who were permitted a 2-hour nap every 12 hours (NAP condition) throughout the 88-hour period. PVT reaction time means and standard deviations increased markedly among subjects and within each individual subject in the TSD condition relative to the NAP condition. TSD subjects also had increasingly greater performance variability as a function of time on task after 18 hours of wakefulness. During sleep deprivation, variability in PVT performance reflected a combination of normal timely responses, errors of omission (i.e., lapses), and errors of commission (i.e., responding when no stimulus was present). Errors of omission and errors of commission were highly intercorrelated across deprivation in the TSD condition (r = 0.85, p = 0.0001), suggesting that performance instability is more likely to include compensatory effort than a lack of motivation. The marked increases in PVT performance variability as sleep loss continued supports the "state instability" hypothesis, which posits that performance during sleep deprivation is increasingly variable due to the influence of sleep initiating mechanisms on the endogenous capacity to maintain attention and alertness, thereby creating an unstable state that fluctuates within seconds and that cannot be characterized as either fully awake or asleep.  相似文献   

9.
Sleep loss has been associated with increased sleepiness, decreased performance, elevations in inflammatory cytokines, and insulin resistance. Daytime napping has been promoted as a countermeasure to sleep loss. To assess the effects of a 2-h midafternoon nap following a night of sleep loss on postnap sleepiness, performance, cortisol, and IL-6, 41 young healthy individuals (20 men, 21 women) participated in a 7-day sleep deprivation experiment (4 consecutive nights followed by a night of sleep loss and 2 recovery nights). One-half of the subjects were randomly assigned to take a midafternoon nap (1400-1600) the day following the night of total sleep loss. Serial 24-h blood sampling, multiple sleep latency test (MSLT), subjective levels of sleepiness, and psychomotor vigilance task (PVT) were completed on the fourth (predeprivation) and sixth days (postdeprivation). During the nap, subjects had a significant drop in cortisol and IL-6 levels (P < 0.05). After the nap they experienced significantly less sleepiness (MSLT and subjective, P < 0.05) and a smaller improvement on the PVT (P < 0.1). At that time, they had a significant transient increase in their cortisol levels (P < 0.05). In contrast, the levels of IL-6 tended to remain decreased for approximately 8 h (P = 0.1). We conclude that a 2-h midafternoon nap improves alertness, and to a lesser degree performance, and reverses the effects of one night of sleep loss on cortisol and IL-6. The redistribution of cortisol secretion and the prolonged suppression of IL-6 secretion are beneficial, as they improve alertness and performance.  相似文献   

10.
Although sleep restriction is associated with decrements in daytime alertness and neurobehavioural performance, there are considerable inter-individual differences in the degree of impairment. This study examined the effects of short-term sleep restriction on neurobehavioural performance and sleepiness, and the associations between individual differences in impairments and circadian rhythm phase. Healthy adults (n = 43; 22 M) aged 22.5 ± 3.1 (mean ± SD) years maintained a regular 8:16 h sleep:wake routine for at least three weeks prior to laboratory admission. Sleep opportunity was restricted to 5 hours time-in-bed at home the night before admission and 3 hours time-in-bed in the laboratory, aligned by wake time. Hourly saliva samples were collected from 5.5 h before until 5 h after the pre-laboratory scheduled bedtime to assess dim light melatonin onset (DLMO) as a marker of circadian phase. Participants completed a 10-min auditory Psychomotor Vigilance Task (PVT), the Karolinska Sleepiness Scale (KSS) and had slow eye movements (SEM) measured by electrooculography two hours after waking. We observed substantial inter-individual variability in neurobehavioural performance, particularly in the number of PVT lapses. Increased PVT lapses (r = -0.468, p < 0.01), greater sleepiness (r = 0.510, p < 0.0001), and more slow eye movements (r = 0.375, p = 0.022) were significantly associated with later DLMO, consistent with participants waking at an earlier circadian phase. When the difference between DLMO and sleep onset was less than 2 hours, individuals were significantly more likely to have at least three attentional lapses the following morning. This study demonstrates that the phase of an individual’s circadian system is an important variable in predicting the degree of neurobehavioural performance impairment in the hours after waking following sleep restriction, and confirms that other factors influencing performance decrements require further investigation.  相似文献   

11.
ABSTRACT

Sleep deprivation impairs performance on cognitive tasks, but it is unclear which cognitive processes it degrades. We administered a semantic matching task with variable stimulus onset asynchrony (SOA) and both speeded and self-paced trial blocks. The task was administered at the baseline and 24 hours later after 30.8 hours of total sleep deprivation (TSD) or matching well-rested control. After sleep deprivation, the 20% slowest response times (RTs) were significantly increased. However, the semantic encoding time component of the RTs remained at baseline level. Thus, the performance impairment induced by sleep deprivation on this task occurred in cognitive processes downstream of semantic encoding.  相似文献   

12.
13.
Sleep deprivation (SD) leads to impairments in cognitive function. Here, we tested the hypothesis that cognitive changes in the sleep-deprived brain can be explained by information processing within and between large-scale cortical networks. We acquired functional magnetic resonance imaging (fMRI) scans of 20 healthy volunteers during attention and executive tasks following a regular night of sleep, a night of SD, and a recovery nap containing nonrapid eye movement (NREM) sleep. Overall, SD was associated with increased cortex-wide functional integration, driven by a rise of integration within cortical networks. The ratio of within versus between network integration in the cortex increased further in the recovery nap, suggesting that prolonged wakefulness drives the cortex towards a state resembling sleep. This balance of integration and segregation in the sleep-deprived state was tightly associated with deficits in cognitive performance. This was a distinct and better marker of cognitive impairment than conventional indicators of homeostatic sleep pressure, as well as the pronounced thalamocortical connectivity changes that occurs towards falling asleep. Importantly, restoration of the balance between segregation and integration of cortical activity was also related to performance recovery after the nap, demonstrating a bidirectional effect. These results demonstrate that intra- and interindividual differences in cortical network integration and segregation during task performance may play a critical role in vulnerability to cognitive impairment in the sleep-deprived state.

Can the cognitive changes that result from sleep deprivation be explained by information processing within and between large-scale networks in the brain? This study shows that the ratio of within- vs between-network integration is tightly associated with deficits in cognitive performance.  相似文献   

14.

Background

Cognitive performance deteriorates during extended wakefulness and circadian phase misalignment, and some individuals are more affected than others. Whether performance is affected similarly across cognitive domains, or whether cognitive processes involving Executive Functions are more sensitive to sleep and circadian misalignment than Alertness and Sustained Attention, is a matter of debate.

Methodology/Principal Findings

We conducted a 2 × 12-day laboratory protocol to characterize the interaction of repeated partial and acute total sleep deprivation and circadian phase on performance across seven cognitive domains in 36 individuals (18 males; mean ± SD of age = 27.6±4.0 years). The sample was stratified for the rs57875989 polymorphism in PER3, which confers cognitive susceptibility to total sleep deprivation. We observed a deterioration of performance during both repeated partial and acute total sleep deprivation. Furthermore, prior partial sleep deprivation led to poorer cognitive performance in a subsequent total sleep deprivation period, but its effect was modulated by circadian phase such that it was virtually absent in the evening wake maintenance zone, and most prominent during early morning hours. A significant effect of PER3 genotype was observed for Subjective Alertness during partial sleep deprivation and on n-back tasks with a high executive load when assessed in the morning hours during total sleep deprivation after partial sleep loss. Overall, however, Subjective Alertness and Sustained Attention were more affected by both partial and total sleep deprivation than other cognitive domains and tasks including n-back tasks of Working Memory, even when implemented with a high executive load.

Conclusions/Significance

Sleep loss has a primary effect on Sleepiness and Sustained Attention with much smaller effects on challenging Working Memory tasks. These findings have implications for understanding how sleep debt and circadian rhythmicity interact to determine waking performance across cognitive domains and individuals.  相似文献   

15.
To compare the behavioral effects of sleep‐loss sleepiness (performance impairment due to sleep loss) and sleep inertia (period of impaired performance that follows awakening), mean response latencies and number of lapses from a visual simple reaction‐time task were analyzed. Three experimental conditions were designed to manipulate sleepiness and sleep‐inertia levels: uninterrupted sleep, partial sleep reduction, and total sleep deprivation. Each condition included two consecutive nights (the first always a night of uninterrupted sleep, and the second either a night of uninterrupted sleep, a night when sleep was reduced to 3 h, or a night of total sleep deprivation), as well as two days in which performance was assessed at 10 different time points (08:00, 08:30, 09:00, 09:30, 10:00, 11:00, 14:00, 17:00, 20:00, and 23:00 h). From 08:00 to 09:00 h, reaction times in the partial sleep‐reduction and total sleep‐deprivation conditions were at a similar level and were slower than those observed in the uninterrupted sleep condition. In the same time period, the frequency of lapses in the total sleep‐deprivation condition was higher than in the partial sleep‐reduction condition, while this latter condition never differed from the uninterrupted sleep condition. The results indicate that both sleep inertia and sleep‐loss sleepiness lead to an increase in response latencies, but only extreme sleepiness leads to an increase in lapse frequency. We conclude that while reaction times slow as a result of both sleep inertia and sleep‐loss sleepiness, lapses appear to be a specific feature of sleep‐loss sleepiness.  相似文献   

16.
DesignA strictly controlled randomized crossover study with continuous polysomnography monitoring was performed.SettingLaboratory-based study.Participants11 healthy male volunteers.InterventionsVolunteers attended two three-day sessions: “sleep restriction” alone and “sleep restriction and nap”. Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the “sleep restriction and nap” session, volunteers took two 30-minute naps, one in the morning and one in the afternoon.ConclusionsSleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status.  相似文献   

17.
《Chronobiology international》2013,30(9):1187-1196
Sleep-deprived people, or those performing extended monotonous tasks, can exhibit brief episodes in which they suspend performance and appear to fall asleep momentarily—behavioral microsleeps (“microsleeps”). In this study, microsleeps were identified using eye video and tracking response during a 20-min continuous tracking task undertaken by 16 healthy volunteers (mean age 24.9?yrs; 8 females, 8 males) in the early afternoon following a normally rested night and a night of restricted sleep (time-in-bed restricted to 4?h). Sessions were 1 wk apart and counterbalanced. Wrist actigraphy, self-reported sleepiness, and sleep quality were also recorded. We hypothesized that high microsleep rates when normally rested or after a night of sleep restriction would be related to poor sleep quality, sleep disturbance, circadian type, irregular sleep patterns, low daily sleep duration, or poor sleep efficiency. We also hypothesized that prior performance on a 10-min psychomotor vigilance task (PVT) (mean reaction time or number of PVT lapses) would be related to the number of microsleeps during the tracking task and that PVT performance could, therefore, be used as a fitness-for-duty indicator. The number of microsleeps during the tracking task increased following sleep restriction (mean 11.4 versus 27.9; p?=?0.03). There were no correlations between the number of microsleeps in the normally rested session and any of the actigraphically measured or self-reported sleep measures. However, the number of microsleeps following sleep restriction was correlated with sleep efficiency (r?=?0.73, p?=?0.001), sleep onset latency (r?=??0.57, p?=?0.02), and sleep onset time-of-day standard deviation (r?=??0.54, p?=?0.03) over 11 normally rested nights. There was no correlation between PVT performance and the subsequent number of microsleeps during the tracking task in either session. Attributes usually associated with beneficial nighttime sleep patterns—going to sleep at a similar time each night, falling asleep quickly, and infrequent arousals—were related to greater vulnerability to microsleeps following sleep restriction. There were intercorrelations between all the sleep measures associated with microsleep rate following sleep restriction, indicating that the measures form a pattern of behaviors and are not independently related to microsleep rate. Perhaps some people maintain a regular sleep pattern because they experience sleepiness the following day when their pattern is disrupted. Conversely, people with more variation in their sleep pattern may do so because this does not substantially increase sleepiness the following day. We conclude that people with consistent sleep patterns and efficient sleep may be more prone to microsleeps than other people when their usual regular pattern is disrupted by sleep restriction.  相似文献   

18.
《Chronobiology international》2013,30(9):1249-1257
Operational settings involving shiftwork or extended operations require periods of prolonged wakefulness, which in conjunction with sleep loss and circadian factors, can have a negative impact on performance, alertness, and workplace safety. Napping has been shown to improve performance and alertness after periods of prolonged wakefulness and sleep loss. Longer naps may not only result in longer-lasting benefits but also increase the risk of sleep inertia immediately upon waking. The time course of performance after naps of differing durations is thus an important consideration in weighing the benefits and risks of napping in workplace settings. The objective of this study was to evaluate the effectiveness of nap opportunities of 20, 40, or 60 min for maintaining alertness and performance 1.5–6 h post-nap in simulated nightwork (P1) or extended operations (P2). Each protocol included 12 participants in a within-subjects design in a controlled laboratory environment. After a baseline 8 h time-in-bed, healthy young males (P1 mean age 25.1 yr; P2 mean age 23.2 yr) underwent either ≈20 h (P1) or ≈30 h (P2) of sleep deprivation on four separate occasions, followed by nap opportunities of 0, 20, 40, and 60 min. Sleep on the baseline night and during the naps was recorded polysomnographically. During the nap opportunities, sleep onset latency was short and sleep efficiency was high. A greater proportion of slow-wave sleep (SWS) was obtained in nap opportunities of 40 and 60 min compared with 20 min. Rapid eye movement (REM) sleep occurred infrequently. A subjective sleepiness rating (Karolinska Sleepiness Scale, KSS), 2-Back Working Memory Task (WMT), and Psychomotor Vigilance Task (PVT) were completed 1.5, 2, 2.5, 3, 4, 5, and 6 h post-nap. The slowest 10% of PVT responses were significantly faster after 40 and 60 min naps compared with a 20 min (P1) or no (P2) nap. There were significantly fewer PVT lapses after 40 and 60 min naps compared with no nap (P2), and after 60 min naps compared with 20 min naps (P1). Participants felt significantly less sleepy and made more correct responses and fewer omissions on the WMT after 60 min naps compared with no nap (P2). Subjective sleepiness and WMT performance were not related to the amount of nap-time spent in SWS. However, PVT response speed was significantly slower when time in SWS was <10 min compared with 20–29.9 min. In conclusion, in operationally relevant scenarios, nap opportunities of 40 and 60 min show more prolonged benefits 1.5–6 h post-nap, than a 20 min or no nap opportunity. Benefits were more apparent when the homeostatic pressure for sleep was high and post-nap performance testing occurred across the afternoon (P2). For sustained improvement in cognitive performance, naps of 40–60 min are recommended. (Author correspondence: )  相似文献   

19.
The deleterious effects of prolonged sleep deprivation on behavior and cognition are a concern in modern society. Persons at risk for impaired performance and health-related issues resulting from prolonged sleep loss would benefit from agents capable of reducing these detrimental effects at the time they are sleep deprived. Agents capable of improving cognition by enhancing brain activity under normal circumstances may also have the potential to reduce the harmful or unwanted effects of sleep deprivation. The significant prevalence of excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamatergic receptors in the brain provides a basis for implementing a class of drugs that could act to alter or remove the effects of sleep deprivation. The ampakine CX717 (Cortex Pharmaceuticals), a positive allosteric modulator of AMPA receptors, was tested for its ability to enhance performance of a cognitive, delayed match-to-sample task under normal circumstances in well-trained monkeys, as well as alleviate the detrimental effects of 30-36 h of sleep deprivation. CX717 produced a dose-dependent enhancement of task performance under normal alert testing conditions. Concomitant measures of regional cerebral metabolic rates for glucose (CMRglc) during the task, utilizing positron emission tomography, revealed increased activity in prefrontal cortex, dorsal striatum, and medial temporal lobe (including hippocampus) that was significantly enhanced over normal alert conditions following administration of CX717. A single night of sleep deprivation produced severe impairments in performance in the same monkeys, accompanied by significant alterations in task-related CMRglc in these same brain regions. However, CX717 administered to sleep-deprived monkeys produced a striking removal of the behavioral impairment and returned performance to above-normal levels even though animals were sleep deprived. Consistent with this recovery, CMRglc in all but one brain region affected by sleep deprivation was also returned to the normal alert pattern by the drug. The ampakine CX717, in addition to enhancing cognitive performance under normal alert conditions, also proved effective in alleviating impairment of performance due to sleep deprivation. Therefore, the ability to activate specific brain regions under normal alert conditions and alter the deleterious effects of sleep deprivation on activity in those same regions indicate a potential role for ampakines in sustaining performance under these types of adverse conditions.  相似文献   

20.
The two-process model of sleep regulation makes accurate predictions of sleep timing and duration for a variety of experimental sleep deprivation and nap sleep scenarios. Upon extending its application to waking neurobehavioral performance, however, the model fails to predict the effects of chronic sleep restriction. Here we show that the two-process model belongs to a broader class of models formulated in terms of coupled non-homogeneous first-order ordinary differential equations, which have a dynamic repertoire capturing waking neurobehavioral functions across a wide range of wake/sleep schedules. We examine a specific case of this new model class, and demonstrate the existence of a bifurcation: for daily amounts of wakefulness less than a critical threshold, neurobehavioral performance is predicted to converge to an asymptotically stable state of equilibrium; whereas for daily wakefulness extended beyond the critical threshold, neurobehavioral performance is predicted to diverge from an unstable state of equilibrium. Comparison of model simulations to laboratory observations of lapses of attention on a psychomotor vigilance test (PVT), in experiments on the effects of chronic sleep restriction and acute total sleep deprivation, suggests that this bifurcation is an essential feature of performance impairment due to sleep loss. We present three new predictions that may be experimentally verified to validate the model. These predictions, if confirmed, challenge conventional notions about the effects of sleep and sleep loss on neurobehavioral performance. The new model class implicates a biological system analogous to two connected compartments containing interacting compounds with time-varying concentrations as being a key mechanism for the regulation of psychomotor vigilance as a function of sleep loss. We suggest that the adenosinergic neuromodulator/receptor system may provide the underlying neurobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号