首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selfing variants in tristylous Eichhornia paniculata (Pontederiaceae) possess an elongated, short-level stamen adjacent to mid-level stigmas, which causes autonomous selfing. The variants commonly spread in dimorphic, but not trimorphic populations in northeast Brazil. We investigated the effect of stamen elongation on pollen size and siring ability. Competition experiments using controlled hand-pollination and allozyme markers were used to compare different pollen types. Pollen from the elongated stamen was significantly larger in size than pollen from unmodified short-level stamens. In mixed pollinations of mid-level stigmas, pollen from the elongated stamen sired significantly more seed than pollen from unmodified short-level stamens. Despite these differences, the size and compatibility of pollen from the elongated stamen were more similar to short- than mid-level pollen, indicating that alterations to stamen level were not associated with major changes in pollen characteristics. The results suggest that the advantage of selfing variants in dimorphic populations is mainly due to efficient pollen transfer to mid-level stigmas rather than increased postpollination siring success of pollen from modified stamens. In addition, the absence of major changes in pollen size and compatibility associated with stamen elongation support other lines of evidence indicating that selfing variants are not the result of recombination in the putative heterostyly supergene.  相似文献   

2.
Abstract. Derived characters that have not changed during the diversification of a clade provide traits that are diagnostic at higher taxonomic levels. The tetradynamous stamen condition (four long and two short stamens) of the Brassicaceae is an example of a diagnostic trait that has not changed during the diversification of this large flowering plant family. We investigated one hypothesis that might explain the long-term stasis of this trait–that tetradynamous stamens have persisted because of an absence of genetic variation underlying the trait. Through a sib-analysis with Raphanus raphanistrum and an artificial selection experiment with Brassica rapa , we demonstrate that significant genetic variation is present for the tetradynamous condition in both species and that the trait is therefore not constrained from evolutionary change by a lack of heritable genetic variation.  相似文献   

3.
Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life‐history traits and the correlations among these traits. To predict the response of life‐history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance‐covariance matrix, G . Here, we estimated G for key life‐history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set‐up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude‐specific covariance of the life‐history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance–covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance–covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments.  相似文献   

4.
Inbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this article, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance, and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.  相似文献   

5.
Angiosperms show an evolutionary trend from an indefinite to a fixed number of floral organs. When floral formula inconstancy in recent angiosperms is reported, it is often considered as a byproduct of stress and its fitness consequences remain mostly unexplored. We report substantial nonhomeotic meristic variation in stamen number (0–10 stamens per flower) in two populations of Hormathophylla spinosa during four years. This variation was plastic, suggesting its functional role in the adjustment of phenotypic gender. However, no correlations were found between phenotypic gender and plant size, pollinator or herbivore abundance. Effects on female reproductive success were inconsistent on a per-flower and on a per-plant basis, rendering adaptive explanations in terms of selfing or resource adjustment unsatisfactory with the data available. Nevertheless, individuals showing larger interannual variation in phenotypic gender showed higher female reproductive success, suggesting an advantage for gender modification. Although our results do not easily conform to any adaptive explanation, this remarkable example of breakdown of trait canalization should stimulate the study of the mechanisms and ultimate causes responsible for the maintenance of fixed floral traits.  相似文献   

6.
Stamens that have lost their primary function of pollen production, or staminodes, occur uncommonly within angiosperms, but frequently fulfill important secondary floral functions. The phylogenetic distribution of staminodes suggests that they typically arise during evolutionary reduction of the androecium. Differences in the genetic control and patterns of stamen loss between actinomorphic and zygomorphic flowers shape staminode development. In clades with actinomorphic flowers, staminodes generally replace an entire stamen whorl and staminode loss seems irreversible. In contrast, in clades with zygomorphic flowers staminodes evolve from a subset of the stamens in a whorl and staminodes can reappear in a lineage after being lost (e.g., Cheloneae, Scrophulariaceae). If staminodes do not adopt new functions during androecium reduction they are lost quickly, so that nonfunctional staminodes appear only in recently derived taxa. Alternatively, when staminodes assume new floral roles, either directly or indirectly after a nonfunctional period, they can become integral floral components which perpetuate within clades (e.g., Orchidaceae). Indirect evolution of staminode function allows greater flexibility of function by allowing staminodes to take over roles not performed by stamens, such as involvement in mechanisms to prevent self-pollination and mechanisms of explosive pollination. Multifunctional staminodes characterize lineages with universal or widespread staminodes.  相似文献   

7.
For a quantitative trait under stabilizing selection, the effect of epistasis on its genetic architecture and on the changes of genetic variance caused by bottlenecking were investigated using theory and simulation. Assuming empirical estimates of the rate and effects of mutations and the intensity of selection, we assessed the impact of two‐locus epistasis (synergistic/antagonistic) among linked or unlinked loci on the distribution of effects and frequencies of segregating loci in populations at the mutation‐selection‐drift balance. Strong pervasive epistasis did not modify substantially the genetic properties of the trait and, therefore, the most likely explanation for the low amount of variation usually accounted by the loci detected in genome‐wide association analyses is that many causal loci will pass undetected. We investigated the impact of epistasis on the changes in genetic variance components when large populations were subjected to successive bottlenecks of different sizes, considering the action of genetic drift, operating singly (D), or jointly with mutation (MD) and selection (MSD). An initial increase of the different components of the genetic variance, as well as a dramatic acceleration of the between‐line divergence, were always associated with synergistic epistasis but were strongly constrained by selection.  相似文献   

8.
Summary Triple-testcross experiments were used to analyze epistatic contributions to larva weight, pupa weight, pupa width and adult weight in Tribolium castaneum. Seven diverse inbred lines and the F1. produced by crossing the two tester lines were examined for indications of epistasis. Larva weight was the only trait for which no significant epistasis was detected. There was significant epistasis for pupa weight in three of the inbred lines; for pupa width in four of the inbred lines; for adult weight in five of the inbred lines. Only one inbred line and the F1 line failed to exhibit significant epistasis for any trait. Each inbred line had a unique pattern of epistasis, suggesting that a number of different loci were contributing to the detected epistasis.This paper (No. 76-5-158) is published with the approval of the Director of the Kentucky Agricultural Experiment Station.  相似文献   

9.
In prior work we detected no significant inbreeding depression for pollen and ovule production in the highly selfing Mimulus micranthus, but both characters showed high inbreeding depression in the mixed-mating M. guttatus. The goal of this study was to determine if the genetic load for these traits in M. guttatus could be purged in a program of enforced selfing. These characters should have been under much stronger selection in our artificial breeding program than previously reported characters such as biomass and total flower production because, for example, plants unable to produce viable pollen could not contribute to future generations. Purging of genetic load was investigated at the level of both the population and the individual maternal line within two populations of M. guttatus. Mean ovule number, pollen number, and pollen viability declined significantly as plants became more inbred. The mean performance of outcross progeny generated from crosses between pairs of maternal inbred lines always exceeded that of self progeny and was fairly constant for each trait through all five generations. The consistent performance of outcross progeny and the universally negative relationships between performance and degree of inbreeding are interpreted as evidence for the weakness of selection relative to the quick fixation of deleterious alleles due to drift during the inbreeding process. The selective removal (purging) of deleterious alleles from our population would have been revealed by an increase in performance of outcross progeny or an attenuation of the effects of increasing homozygosity. The relationships between the mean of each of these traits and the expected inbreeding coefficient were linear, but one population displayed a significant negative curvilinear relationship between the log of male fertility (a function of pollen number and viability) and the inbreeding coefficient. The generally linear form of the responses to inbreeding were taken as evidence consistent with an additive model of gene action, but the negative curvilinear relationship between male fertility and the inbreeding coefficient suggested reinforcing epistasis. Within both populations there was significant genetic variation among maternal lineages for the response to inbreeding in all traits. Although all inbred lineages declined at least somewhat in performance, several maternal lines maintained levels of performance just below outcross means even after four or five generations of selfing. We suggest that selection among maternal lines will have a greater effect than selecting within lines in lowering the genetic load of populations.  相似文献   

10.
Inbreeding is known to reduce heterozygosity of neutral genetic markers, but its impact on quantitative genetic variation is debated. Theory predicts a linear decline in additive genetic variance (V(A)) with increasing inbreeding coefficient (F) when loci underlying the trait act additively, but a nonlinear hump-shaped relationship when dominance and epistasis are important. Predictions for heritability (h2) are similar, although the exact shape depends on the value of h2 in the absence of inbreeding. We located 22 published studies in which the level of genetic variation in experimentally inbred populations (measured by V(A) or h2) was compared with that in outbred control populations. For life-history traits, the data strongly supported a nonlinear change in genetic variation with increasing F. V(A) and h2 were, respectively, 244% and 50% higher at F = 0.4 than in outbred populations, and dominance plus epistatic variance together exceeded additive variance by a factor of four. For nonfitness traits the decline was linear and estimates of nonadditive variance were small. These results confirm that population bottlenecks frequently increase V(A) in some traits, and imply that life-history traits are underlain by substantial dominance or epistasis. However, the importance of drift-induced genetic variation in conservation or evolutionary biology is questionable, in part because inbreeding depression usually accompanies inbreeding.  相似文献   

11.
Accurate estimates of trait evolvabilities are central to predicting the short‐term evolutionary potential of populations, and hence their ability to adapt to changing environments. We quantify and evaluate the evolvability of herkogamy, the spatial separation of male and female structures in flowers, a key floral trait associated with variation in mating systems. We compiled genetic‐variance estimates for herkogamy and related floral traits, computed evolvabilities, and compared these among trait groups and among species differing in their mating systems. When measured in percentage of its own size, the median evolvability of herkogamy was an order of magnitude greater than the evolvability of other floral size measurements, and was generally not strongly constrained by genetic covariance between its components (pistil and stamen lengths). Median evolvabilities were similar across mating systems, with only a tendency toward reduction in highly selfing taxa. We conclude that herkogamy has the potential to evolve rapidly in response to changing environments. This suggests that the extensive variation in herkogamy commonly observed among closely related populations and species may result from rapid adaptive tracking of fitness optima determined by variation in pollinator communities or other selective factors.  相似文献   

12.
 We have mapped QTLs (quantitative trait loci) for an adaptive trait, flowering time, in a selfing annual, Arabidopsis thaliana. To obtain a mapping population we made a cross between an early-summer, annual strain, Li-5, and an individual from a late over-wintering natural population, Naantali. From the backcross to Li-5 298 progeny were grown, of which 93 of the most extreme individuals were genotyped. The data were analysed with both interval mapping and composite interval mapping methods to reveal one major and six minor QTLs, with at least one QTL on each of the five chromosomes. The QTL on chromosome 4 was a major one with an effect of 17.3 days on flowering time and explaining 53.4% of the total variance. The others had effects of at most 6.5 days, and they accounted for only small portions of the variance. Epistasis was indicated between one pair of the QTLs. The result of finding one major QTL and little epistasis agrees with previous studies on flowering time in Arabidopsis thaliana and other species. That several QTLs were found was expected considering the large number of possible candidate loci. In the light of the suggested genetic models of gene action at the candidate loci, epistasis was to be expected. The data showed that major QTLs for adaptive traits can be detected in non-domesticated species. Received: 15 January 1997/Accepted: 21 February 1997  相似文献   

13.
Heritability of stamen fertility—different scores were given to sterile stamens developed to different degrees as well as to fertile stamens with one or two pollen sacs—was studied in Scleranthus annuus (Caryophyllaceae), a selling annual that shows extensive phenotypic variation in stamen fertility. Variation within and among 172 maternal families, derived from plants representing 20 natural populations from southern Sweden, was used to estimate heritabilities of stamen fertility for stamens/staminoids at each of the ten stamen positions in the flower. The hierarchical design of the study allowed partitioning of variation at four levels of organization using nested analysis of variance. Heritabilities ranged from 0.631 to 0.714 for stamen positions in the outer whorl of stamens and from 0.235 to 0.555 for positions in the inner whorl. When stamen fertility was pooled across all stamen positions of a flower, the heritability was 0.807. The nested ANOVA indicated that stamen positions in the outer whorl have comparatively higher proportions of among-family and among-population variation than those in the inner whorl. Furthermore, highly significant genetic correlations exist among stamen positions within the inner whorl and among positions within the outer whorl, but not so between positions from each of the two whorls.  相似文献   

14.
Genetic covariation among multiple traits will bias the direction of evolution. Although a trait's phenotypic context is crucial for understanding evolutionary constraints, the evolutionary potential of one (focal) trait, rather than the whole phenotype, is often of interest. The extent to which a focal trait can evolve independently depends on how much of the genetic variance in that trait is unique. Here, we present a hypothesis‐testing framework for estimating the genetic variance in a focal trait that is independent of variance in other traits. We illustrate our analytical approach using two Drosophila bunnanda trait sets: a contact pheromone system comprised of cuticular hydrocarbons (CHCs), and wing shape, characterized by relative warps of vein position coordinates. Only 9% of the additive genetic variation in CHCs was trait specific, suggesting individual traits are unlikely to evolve independently. In contrast, most (72%) of the additive genetic variance in wing shape was trait specific, suggesting relative warp representations of wing shape could evolve independently. The identification of genetic variance in focal traits that is independent of other traits provides a way of studying the evolvability of individual traits within the broader context of the multivariate phenotype.  相似文献   

15.
Juenger T  Purugganan M  Mackay TF 《Genetics》2000,156(3):1379-1392
A central question in biology is how genes control the expression of quantitative variation. We used statistical methods to estimate genetic variation in eight Arabidopsis thaliana floral characters (fresh flower mass, petal length, petal width, sepal length, sepal width, long stamen length, short stamen length, and pistil length) in a cosmopolitan sample of 15 ecotypes. In addition, we used genome-wide quantitative trait locus (QTL) mapping to evaluate the genetic basis of variation in these same traits in the Landsberg erecta x Columbia recombinant inbred line population. There was significant genetic variation for all traits in both the sample of naturally occurring ecotypes and in the Ler x Col recombinant inbred line population. In addition, broad-sense genetic correlations among the traits were positive and high. A composite interval mapping (CIM) analysis detected 18 significant QTL affecting at least one floral character. Eleven QTL were associated with several floral traits, supporting either pleiotropy or tight linkage as major determinants of flower morphological integration. We propose several candidate genes that may underlie these QTL on the basis of positional information and functional arguments. Genome-wide QTL mapping is a promising tool for the discovery of candidate genes controlling morphological development, the detection of novel phenotypic effects for known genes, and in generating a more complete understanding of the genetic basis of floral development.  相似文献   

16.
Most theoretical works predict that selfing should reduce the level of additive genetic variance available for quantitative traits within natural populations. Despite a growing number of quantitative genetic studies undertaken during the last two decades, this prediction is still not well supported empirically. To resolve this issue and confirm or reject theoretical predictions, we reviewed quantitative trait heritability estimates from natural plant populations with different rates of self‐fertilization and carried out a meta‐analysis. In accordance with models of polygenic traits under stabilizing selection, we found that the fraction of additive genetic variance is negatively correlated with the selfing rate. Although the mating system explains a moderate fraction of the variance, the mean reduction of narrow‐sense heritability values between strictly allogamous and predominantly selfing populations is strong, around 60%. Because some nonadditive components of genetic variance become selectable under inbreeding, we determine whether self‐fertilization affects the relative contribution of these components to genetic variance by comparing narrow‐sense heritability estimates from outcrossing populations with broad‐sense heritability estimated in autogamous populations. Results suggest that these nonadditive components of variance may restore some genetic variance in predominantly selfing populations; it remains, however, uncertain how these nonadditive components will contribute to adaptation.  相似文献   

17.
The function of stamen dimorphism in the breeding system of the alpine shrub Rhododendron ferrugineum was studied in two populations in the French Alps. This species has pentameric flowers with two whorls of stamens: an inner whorl of five long stamens and an outer whorl of short stamens. We studied the development of stamens from buds to mature flowers (measurement of the filament, anther, and style lengths at five successive phenological stages) and compared the size and position of reproductive organs at maturity in control and partially emasculated flowers (removal of long-level stamens) to determine whether the presence of long-level stamens constitutes a constraint for the development of the short-level ones. Stamen dimorphism can be observed early in stamen development, from the bud stage of the year prior to flowering. At this early stage, meiosis had already occurred. Emasculation of the long-level stamens induced the short-level ones to grow longer than in normal conditions. We also performed seven pollination treatments on ten randomly chosen individuals in each population, and the number of seeds following each treatment was recorded. Results from these treatments showed that R. ferrugineum produced spontaneous selfed seeds in the absence of pollinators. However, no seed was produced when short-level stamens were emasculated and pollinators excluded, suggesting that long-level stamens are not responsible for selfing in the absence of pollinators and that reproductive assurance is promoted by short-level stamens.  相似文献   

18.
Georgiady MS  Whitkus RW  Lord EM 《Genetics》2002,161(1):333-344
The evolution of inbreeding is common throughout the angiosperms, although little is known about the developmental and genetic processes involved. Lycopersicon pimpinellifolium (currant tomato) is a self-compatible species with variation in outcrossing rate correlated with floral morphology. Mature flowers from inbreeding and outcrossing populations differ greatly in characters affecting mating behavior (petal, anther, and style lengths); other flower parts (sepals, ovaries) show minimal differences. Analysis of genetic behavior, including quantitative trait locus (QTL) mapping, was performed on representative selfing and outcrossing plants derived from two contrasting natural populations. Six morphological traits were analyzed: flowers per inflorescence; petal, anther, and style lengths; and lengths of the fertile and sterile portions of anthers. All traits were smaller in the selfing parent and had continuous patterns of segregation in the F(2). Phenotypic correlations among traits were all positive, but varied in strength. Quantitative trait locus mapping was done using 48 RFLP markers. Five QTL total were found involving four of the six traits: total anther length, anther sterile length, style length, and flowers per inflorescence. Each of these four traits had a QTL of major (>25%) effect on phenotypic variance.  相似文献   

19.
The effect of a gene involved in the variation of a quantitative trait may change due to epistatic interactions with the overall genetic background or with other genes through digenic interactions. The classical populations used to map quantitative trait loci (QTL) are poorly efficient to detect epistasis. To assess the importance of epistasis in the genetic control of fruit quality traits, we compared 13 tomato lines having the same genetic background except for one to five chromosome fragments introgressed from a distant line. Six traits were assessed: fruit soluble solid content, sugar content and titratable acidity, fruit weight, locule number and fruit firmness. Except for firmness, a large part of the variation of the six traits was under additive control, but interactions between QTL leading to epistasis effects were common. In the lines cumulating several QTL regions, all the significant epistatic interactions had a sign opposite to the additive effects, suggesting less than additive epistasis. Finally the re-examination of the segregating population initially used to map the QTL confirmed the extent of epistasis, which frequently involved a region where main effect QTL have been detected in this progeny or in other studies.  相似文献   

20.
Female preferences for song patterns of males of Gryllodes sigillatus and genetic variance of morphological traits correlated with them were analyzed. Females preferred short pulses associated with large males. The males’ thorax width, wing length and femur III length showed stronger relationship with the song pulse duration, whereas the relationship between pulse duration and wing width was not significant. Interestingly, this last trait was the only one that showed significant levels of genetic variance. Perhaps these results could be explained by the evolutionary response to sexual selection. Sexual selection could deplete the genetic variance in the male traits related to male‐mating success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号