首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adherence of Campylobacter jejuni to its particular host cells is mediated by several pathogen proteins. We screened a transposon-based mutant library of C. jejuni in order to identify clones with an invasion deficient phenotype towards Caco2 cells and detected a mutant with the transposon insertion in gene cj0268c. In vitro characterization of a generated non-random mutant, the mutant complemented with an intact copy of cj0268c and parental strain NCTC 11168 confirmed the relevance of Cj0268c in the invasion process, in particular regarding adherence to host cells. Whereas Cj0268c does not impact autoagglutination or motility of C. jejuni, heterologous expression in E. coli strain DH5α enhanced the potential of the complemented E. coli strain to adhere to Caco2 cells significantly and, thus, indicates that Cj0268c does not need to interact with other C. jejuni proteins to develop its adherence-mediating phenotype. Flow cytometric measurements of E. coli expressing Cj0268c indicate a localization of the protein in the periplasmic space with no access of its C-terminus to the bacterial surface. Since a respective knockout mutant possesses clearly reduced resistance to Triton X-100 treatment, Cj0268c contributes to the stability of the bacterial cell wall. Finally, we could show that the presence of cj0268c seems to be ubiquitous in isolates of C. jejuni and does not correlate with specific clonal groups regarding pathogenicity or pathogen metabolism.  相似文献   

3.
Campylobacter jejuni NCTC 11168 was capable of growth to levels comparable with FeSO4 in defined iron-limited medium (minimal essential medium alpha [MEMα]) containing ferrilactoferrin, ferritransferrin, or ferri-ovotransferrin. Iron was internalized in a contact-dependent manner, with 94% of cell-associated radioactivity from either 55Fe-loaded transferrin or lactoferrin associated with the soluble cell fraction. Partitioning the iron source away from bacteria significantly decreased cellular growth. Excess cold transferrin or lactoferrin in cultures containing 55Fe-loaded transferrin or lactoferrin resulted in reduced levels of 55Fe uptake. Growth of C. jejuni in the presence of ferri- and an excess of apoprotein reduced overall levels of growth. Following incubation of cells in the presence of ferrilactoferrin, lactoferrin became associated with the cell surface; binding levels were higher after growth under iron limitation. A strain carrying a mutation in the cj0178 gene from the iron uptake system Cj0173c-Cj0178 demonstrated significantly reduced growth promotion in the presence of ferrilactoferrin in MEMα compared to wild type but was not affected in the presence of heme. Moreover, this mutant acquired less 55Fe than wild type when incubated with 55Fe-loaded protein and bound less lactoferrin. Complementation restored the wild-type phenotype when cells were grown with ferrilactoferrin. A mutant in the ABC transporter system permease gene (cj0174c) showed a small but significant growth reduction. The cj0176c-cj0177 intergenic region contains two separate Fur-regulated iron-repressible promoters. This is the first demonstration that C. jejuni is capable of acquiring iron from members of the transferrin protein family, and our data indicate a role for Cj0178 in this process.  相似文献   

4.
5.
The cj0183 and cj0588 genes identified in the Campylobacter jejuni NCTC 11168 genome encode proteins with amino acid sequences predicted to be homologous to other bacterial hemolysins. The Cj0183 protein exhibits homology to Brachyspira hyodysenteriae TlyC protein, whereas the cj0588 gene product is homologous to TlyA proteins Brachyspira hyodysenteriae, Helicobacter pylori, and Mycobacterium tuberculosis, which play a crucial role in bacterial virulence. The aim of our work was to examine the hemolytic activity and determine the role of cj0183- and cj0588-encoded proteins on the adherence of chosen C. jejuni strains to the Caco-2 cell line by constructing deletion mutants in the mentioned genes. We found out there is no difference in hemolytic activity between both mutants in gene cj0183 and cj0588 and the wild strains. However, Cj0588 protein but not Cj0183 is involved in adherence to the Caco-2 cells.  相似文献   

6.
Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis.  相似文献   

7.
Bacterial lipoproteins play an important role in bacterial pathogenesis and physiology. The genome of Campylobacter jejuni, a major foodborn pathogen, is predicted to contain over 20 lipoproteins. However, the functions of the majority of C. jejuni lipoproteins remain unknown. The Cj0090 protein is encoded by a lipoprotein operon composed of cj0089, cj0090, and cj0091. Here, we report the crystal structure of Cj0090 at 1.9 Å resolution, revealing a novel variant of the immunoglobulin fold with β‐sandwich architecture. The structure suggests that Cj0090 may be involved in protein‐protein interactions, consistent with a possible role for bacterial lipoproteins. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Campylobacter jejuni, a major food‐borne intestinal pathogen, preferentially utilizes a few specific amino acids and some organic acids such as pyruvate and l ‐ and d ‐lactate as carbon sources, which may be important for growth in the avian and mammalian gut. Here, we identify the enzymatic basis for C. jejuni growth on l ‐lactate. Despite the presence of an annotated gene for a fermentative lactate dehydrogenase (cj1167), no evidence for lactate excretion could be obtained in C. jejuni NCTC 11168, and inactivation of the cj1167 gene did not affect growth on lactate as carbon source. Instead, l ‐lactate utilization in C. jejuni NCTC 11168 was found to proceed via two novel NAD‐independent l ‐LDHs; a non‐flavin iron–sulfur containing three subunit membrane‐associated enzyme (Cj0075c‐73c), and a flavin and iron–sulfur containing membrane‐associated oxidoreductase (Cj1585c). Both enzymes contribute to growth on l ‐lactate, as single mutants in each system grew as well as wild‐type on this substrate, while a cj0075c cj1585c double mutant showed no l ‐lactate oxidase activity and did not utilize or grow on l ‐lactate; d ‐lactate‐dependent growth was unaffected. Orthologues of Cj0075c‐73c (LldEFG/LutABC) and Cj1585c (Dld‐II) were recently shown to represent two novel families of l ‐ and d ‐lactate oxidases; this is the first report of a bacterium where both enzymes are involved in l ‐lactate utilization only. The cj0075c‐73c genes are located directly downstream of a putative lactate transporter gene (cj0076c, lctP), which was also shown to be specific for l ‐lactate. The avian and mammalian gut environment contains dense populations of obligate anaerobes that excrete lactate; our data indicate that C. jejuni is well equipped to use l ‐ and d ‐lactate as both electron‐donor and carbon source.  相似文献   

9.
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.  相似文献   

10.
Campylobacter jejuni is a bacterial pathogen that is generally acquired as a zoonotic infection from poultry and animals. Adhesion of C. jejuni to human colorectal epithelial cells is weakened after loss of its cj0588 gene. The Cj0588 protein belongs to the type I group of TlyA (TlyAI) enzymes, which 2′‐O‐methylate nucleotide C1920 in 23S rRNA. Slightly longer TlyAII versions of the methyltransferase are found in actinobacterial species including Mycobacterium tuberculosis, and methylate not only C1920 but also nucleotide C1409 in 16S rRNA. Loss of TlyA function attenuates virulence of both M. tuberculosis and C. jejuni. We show here that the traits impaired in C. jejuni null strains can be rescued by complementation not only with the original cj0588 (tlyA I) but also with a mycobacterial tlyA II gene. There are, however, significant differences in the recombinant phenotypes. While cj0588 restores motility, biofilm formation, adhesion to and invasion of human epithelial cells and stimulation of IL‐8 production in a C. jejuni null strain, several of these properties are further enhanced by the mycobacterial tlyA II gene, in some cases to twice the original wild‐type level. These findings strongly suggest that subtle changes in rRNA modification patterns can affect protein synthesis in a manner that has serious consequences for bacterial pathogenicity.  相似文献   

11.
Mutation of the cj1461 predicted methyltransferase gene reduced the motility of Campylobacter jejuni 81-176. Electron microscopy revealed that the mutant strain had flagella but with aberrant structure. The Δcj1461 mutant was sevenfold more adherent to but 50-fold less invasive of INT-407 human epithelial cells than the wild type.  相似文献   

12.
Campylobacter jejuni encodes 12 of the 14 subunits that make up the respiratory enzyme NADH:ubiquinone oxidoreductase (also called complex I). The two nuo genes not present in C. jejuni encode the NADH dehydrogenase, and in their place in the operon are the novel genes designated Cj1575c and Cj1574c. A series of mutants was generated in which each of the 12 nuo genes (homologues to known complex I subunits) was disrupted or deleted. Each of the nuo mutants will not grow in amino acid-based medium unless supplemented with an alternative respiratory substrate such as formate. Unlike the nuo genes, Cj1574c is an essential gene and could not be disrupted unless an intact copy of the gene was provided at an unrelated site on the chromosome. A nuo deletion mutant can efficiently respire formate but is deficient in α-ketoglutarate respiratory activity compared to the wild type. In C. jejuni, α-ketoglutarate respiration is mediated by the enzyme 2-oxoglutarate:acceptor oxidoreductase; mutagenesis of this enzyme abolishes α-ketoglutarate-dependent O2 uptake and fails to reduce the electron transport chain. The electron acceptor for 2-oxoglutarate:acceptor oxidoreductase was determined to be flavodoxin, which was also determined to be an essential protein in C. jejuni. A model is presented in which CJ1574 mediates electron flow into the respiratory transport chain from reduced flavodoxin and through complex I.  相似文献   

13.
Holden MJ  Sze H 《Plant physiology》1987,84(3):670-676
We have tested directly the effect of Helminthosporium maydis T (Hmt) toxin and various analogs on the membrane potential formed in mitochondria isolated from a Texas (T) cytoplasmic male-sterile and a normal (N) corn. ATP, malate or succinate generated a membrane potential (negative inside) as monitored by the absorbance change of a cationic dye, safranine. The relative membrane potential (Δψ) could also be detected indirectly as 45Ca2+ uptake. Hmt toxin added to T mitochondria dissipated the steady state Δψ similar to addition of a protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Toxin analogs (Cpd XIII: C41H68O12 and Cpd IV: C25H44O6), reduced native toxin (RT2C: C41H84O13) and Pm toxin (band A: C33H60O8, produced by the fungus, Phyllosticta maydis) were effective in dissipating Δψ and decreasing Ca2+ uptake with the following order: Pm (100) » HmT (23-30) > Cpd XIII (11-25) » RT2C (0-4−1.8) > Cpd IV (0.2−1.0). In contrast, the toxins and analogs had no effect on Δψ formed in N mitochondria. The striking similarities of the HmT toxin (band 1: C41H68O13) and Cpd XIII on T mitochondrial activities provide strong evidence supporting the correctness of the polyketol structure assigned to the native toxin. Since the Δψ in energized mitochondria is caused mainly by the electrogenic extrusion of H+, the results support the idea that HmT toxin increases membrane permeability of T mitochondria to H+. The host specificity of the toxin suggests that an interaction with unique target site(s) on the inner mitochondrial membrane of T corn causes H+ leakage.  相似文献   

14.
Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10−8 to 6.0 × 10−3 CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni.  相似文献   

15.

Background

Iron is recognized as an important trace element, essential for most organisms including pathogenic bacteria. HugZ, a protein related to heme iron utilization, is involved in bacterial acquisition of iron from the host. We previously observed that a hugZ homologue is correlated with the adaptive colonization of Helicobacter pylori (H. pylori), a major gastro-enteric pathogen. However, its exact physiological role remains unclear.

Results

A gene homologous to hugZ, designated hp0318, identified in H. pylori ATCC 26695, exhibits 66% similarity to cj1613c of Campylobacter jejuni NCTC 11168. Soluble 6 × His fused-HugZ protein was expressed in vitro. Hemin-agrose affinity analysis indicated that the recombinant HugZ protein can bind to hemin. Absorption spectroscopy at 411 nm further revealed a heme:HugZ binding ratio of 1:1. Enzymatic assays showed that purified recombinant HugZ protein can degrade hemin into biliverdin and carbon monoxide in the presence of either ascorbic acid or NADPH and cytochrome P450 reductase. The biochemical and enzymatic characteristics agreed closely with those of Campylobacter jejuni Cj1613c protein, implying that hp0318 is a functional member of the HugZ family. A hugZ deletion mutant was obtained by homologous recombination. This mutant strain showed poor growth when hemoglobin was provided as the source of iron, partly because of its failure to utilize hemoglobin efficiently. Real-time quantitative PCR also confirmed that the expression of hugZ was regulated by iron levels.

Conclusion

These findings provide biochemical and genetic evidence that hugZ (hp0318) encodes a heme oxygenase involved in iron release/uptake in H. pylori.  相似文献   

16.
Campylobacter jejuni, a Gram-negative motile bacterium, is a leading cause of human gastrointestinal infections. Although the mechanism of C.jejuni-mediated enteritis appears to be multifactorial, flagella play complex roles in the virulence of this human pathogen. Cj0977 is a recently identified virulence factor in C. jejuni and is expressed by a σ28 promoter that controls late genes in the flagellar regulon. A Cj0977 mutant strain is fully motile but significantly reduced in the invasion of intestinal epithelial cells in vitro. Here, we report the crystal structure of the major structural domain of Cj0977, which reveals a homodimeric “hot-dog” fold architecture. Of note, the characteristic hot-dog fold has been found in various coenzyme A (CoA) compound binding proteins with numerous oligomeric states. Structural comparison with other known hot-dog fold proteins locates a putative binding site for an acyl-CoA compound in the Cj0977 protein. Structure-based site-directed mutagenesis followed by invasion assays indicates that key residues in the putative binding site are indeed essential for the Cj0977 virulence function, suggesting a possible function of Cj0977 as an acyl-CoA binding regulatory protein.  相似文献   

17.
Campylobacter jejuni is the leading cause of human gastroenteritis worldwide with over 500 million cases annually. Chemotaxis and motility have been identified as important virulence factors associated with C. jejuni colonisation. Group A transducer-like proteins (Tlps) are responsible for sensing the external environment for bacterial movement to or away from a chemical gradient or stimulus. In this study, we have demonstrated Cj1564 (Tlp3) to be a multi-ligand binding chemoreceptor and report direct evidence supporting the involvement of Cj1564 (Tlp3) in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR) as well as chemotaxis assays of wild type and isogenic mutant strains. A modified nutrient depleted chemotaxis assay was further used to determine positive or negative chemotaxis with specific ligands. Here we demonstrate the ability of Cj1564 to interact with the chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. An isogenic mutant of cj1564 was shown to have altered phenotypic characteristics of C. jejuni, including loss of curvature in bacterial cell shape, reduced chemotactic motility and an increase in both autoagglutination and biofilm formation. We demonstrate Cj1564 to have a role in invasion as in in vitro assays the tlp3 isogenic mutant has a reduced ability to adhere and invade a cultured epithelial cell line; interestingly however, colonisation ability of avian caeca appears to be unaltered. Additionally, protein-protein interaction studies revealed signal transduction initiation through the scaffolding proteins CheV and CheW in the chemotaxis sensory pathway. This is the first report characterising Cj1564 as a multi-ligand receptor for C. jejuni, we therefore, propose to name this receptor CcmL, Campylobacter chemoreceptor for multiple ligands. In conclusion, this study identifies a novel multifunctional role for the C. jejuni CcmL chemoreceptor and illustrates its involvement in the chemotaxis pathway and subsequent survival of this organism in the host.  相似文献   

18.
Compounds obtained by the condensation of ursolic acid (UA) with 1,4-bis(3-aminopropyl)piperazines have previously been shown as cytocidal to Plasmodium falciparum strains. Preliminary results indicated that the inhibition of β-hematin formation (one of the possible mechanisms of action of antimalarial drugs) was achieved by a few of these molecules with varying efficiencies. To gain further insight in the antimalarial action of UA derivatives, we report here the results of additional pathways that may explain their in vitro cytocidal activity such as inhibition of hemin degradation by H2O2 or glutathione (GSH). H2O2-mediated hemin degradation was drastically reduced by hydroxybenzyl-substituted UA derivatives while UA and intermediate compounds displayed weaker inhibitory actions. The results of GSH-mediated hemin degradation inhibition did not parallel those of H2O2 degradation as hydroxybenzyl-substituted UA only proved to be a weak inhibitor. As H2O2 interaction with the iron moiety of hemin is the first step towards its degradation, we assume that the interaction of our products with the ferric ion in the hemin structure is of upmost importance in inhibiting its peroxidative degradation. A two-step mechanism of action implying (1) stacking of the acetylursolic acid structure to hemin and (2) additive protection of hemin ferric iron from H2O2 by hydroxyphenyl groups through steric hindrance and/or trapping of oxygen reactive species in the direct neighborhood of ferric iron can be put forward. For GSH degradation pathway, grafting of UA structure with a piperazine structure gave the best inhibition, pleading for the implication of this latter moiety in the inhibitory process.  相似文献   

19.
The oxidative modification of LDL may play an important role in the early events of atherogenesis. Thus the identification of antioxidative compounds may be of therapeutic and prophylactic importance regarding cardiovascular disease. Copper-chlorophyllin (Cu-CHL), a Cu2+-protoporphyrin IX complex, has been reported to inhibit lipid oxidation in biological membranes and liposomes. Hemin (Fe3+-protoporphyrin IX) has been shown to bind to LDL thereby inducing lipid peroxidation. As Cu-CHL has a similar structure as hemin, one may assume that Cu-CHL may compete with the hemin action on LDL. Therefore, in the present study Cu-CHL and the related compound magnesium-chlorophyllin (Mg-CHL) were examined in their ability to inhibit LDL oxidation initiated by hemin and other LDL oxidizing systems. LDL oxidation by hemin in presence of H2O2 was strongly inhibited by both CHLs. Both chlorophyllins were also capable of effectively inhibiting LDL oxidation initiated by transition metal ions (Cu2+), human umbilical vein endothelial cells (HUVEC) and tyrosyl radicals generated by myeloperoxidase (MPO) in presence of H2O2 and tyrosine. Cu- and Mg-CHL showed radical scavenging ability as demonstrated by the diphenylpicrylhydracylradical (DPPH)-radical assay and estimation of phenoxyl radical generated diphenyl (dityrosine) formation. As assessed by ultracentrifugation the chlorophyllins were found to bind to LDL (and HDL) in serum. The present study shows that copper chlorophyllin (Cu-CHL) and its magnesium analog could act as potent antagonists of atherogenic LDL modification induced by various oxidative stimuli. As inhibitory effects of the CHLs were found at concentrations as low as 1 μmol/l, which can be achieved in humans, the results may be physiologically/therapeutically relevant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号