首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Porcine circovirus type 2 (PCV2) infection is associated with significant and serious swine diseases worldwide, while PCV1 appears to be a nonpathogenic virus. Previous studies demonstrated that the ORF3 protein of PCV2 (PCV2ORF3) was involved in PCV2 pathogenesis via its proapoptotic capability (J. Liu, I. Chen, Q. Du, H. Chua, and J. Kwang, J. Virol. 80:5065-5073, 2006). If PCV2ORF3-induced apoptosis is a determinant of virulence, PCV1ORF3 is hypothesized to lack this ability. The properties of PCV1 and PCV2 ORF3, expressed as fusion proteins to an enhanced green fluorescent protein (eGFP), were characterized with regard to their ability to cause cellular morphological changes, detachment, death, and apoptosis. PCV1ORF3 significantly induced more apoptotic cell death and was toxic to more different cell types than PCV2ORF3 was. PCV1ORF3-associated cell death was caspase dependent. PCV1ORF3 also induced poly(ADP-ribose) polymerase 1 (PARP) cleavage; however, whether PARP was involved in cell death requires further studies. Truncation of PCV1 and elongation of PCV2 ORF3 proteins revealed that the first 104 amino acids contain a domain capable of inducing cell death, whereas the C terminus of PCV1ORF3 contains a domain possibly responsible for enhancing cell death. These results suggest that the pathogenicity of PCV2 for pigs is either not determined or not solely determined by the ORF3 protein.Lymphocyte depletion and the presence of porcine circovirus type 2 (PCV2) genome and antigens (4, 6, 21) are hallmarks of PCV-associated disease (PCVAD), a wasting and immunosuppressive ailment of postweaned pigs. Despite two decades of research, little is known about the molecular pathogenesis of PCVAD.PCV2 is the smallest known autonomous vertebrate virus containing a 1.7-kb single-stranded, ambisense DNA genome (32). The virus has two major open reading frames (ORFs) that encode the replication proteins (Rep and Rep′) involved in the initiation of virus replication (17) and a capsid protein (Cap), forming the capsid of the virion (32). A third ORF encodes an ORF3 protein that has been characterized as an inducer of apoptosis (14). Abrogation of ORF3 expression attenuated PCV2 pathogenesis in BALB/c mice (13) and specific-pathogen-free piglets (9). This led to the hypothesis that ORF3 is involved in PCV2 pathogenesis by inducing apoptosis in infected lymphocytes, leading to lymphocyte depletion and ultimately immunosuppression (13, 25). The closely related, yet nonpathogenic porcine circovirus type 1 (PCV1) also has a third open reading frame, but the properties of the ORF3 protein of PCV1 (PCV1ORF3) have not been characterized. Analysis of over 250 PCV2 variants and 30 PCV1 variants shows a consistent single-nucleotide substitution in the ORF3 coding sequence of PCV2 (PCV2ORF3), resulting in a stop codon and a protein that is half the size of PCV1ORF3 (PCV2ORF3 is made up of 104 amino acids [aa] compared to PCV1ORF3, which is made up of 206 aa). A comparison between PCV1 and PCV2 ORF3 translated regions reveals only 60% amino acid sequence identity (5), making ORF3 the most variable protein among the three identified major proteins of PCV. If ORF3 is a determinant of virulence of PCV2 via its apoptotic capability, PCV1ORF3 is hypothesized to lack the ability to induce apoptotic cell death. This report demonstrates the differences in cytotoxic properties between PCV1ORF3 and PCV2ORF3. Interestingly, PCV1ORF3 appeared to be more cytotoxic than PCV2ORF3, activating a caspase-dependent apoptotic pathway and potentially a caspase-independent, poly(ADP-ribose) polymerase 1 (PARP) cleavage pathway. Further analysis of truncated PCV1ORF3 and elongated PCV2ORF3 showed that different ORF3 proteins had similar patterns of cytotoxicity, although full-length PCV1ORF3 was the most potent inducer of cell death.  相似文献   

4.
5.
6.
Plasmacytoid dendritic cells (pDCs) express the I-type lectin receptor Siglec-H and produce interferon α (IFNα), a critical anti-viral cytokine during the acute phase of murine cytomegalovirus (MCMV) infection. The ligands and biological functions of Siglec-H still remain incompletely defined in vivo. Thus, we generated a novel bacterial artificial chromosome (BAC)-transgenic “pDCre” mouse which expresses Cre recombinase under the control of the Siglec-H promoter. By crossing these mice with a Rosa26 reporter strain, a representative fraction of Siglec-H+ pDCs is terminally labeled with red fluorescent protein (RFP). Interestingly, systemic MCMV infection of these mice causes the downregulation of Siglec-H surface expression. This decline occurs in a TLR9- and MyD88-dependent manner. To elucidate the functional role of Siglec-H during MCMV infection, we utilized a novel Siglec-H deficient mouse strain. In the absence of Siglec-H, the low infection rate of pDCs with MCMV remained unchanged, and pDC activation was still intact. Strikingly, Siglec-H deficiency induced a significant increase in serum IFNα levels following systemic MCMV infection. Although Siglec-H modulates anti-viral IFNα production, the control of viral replication was unchanged in vivo. The novel mouse models will be valuable to shed further light on pDC biology in future studies.  相似文献   

7.
8.
We have developed a capillary tube assay in combination with real-time PCR to quantitate the number of chemoattracted Leptospira cells. We identified Tween 80, glucose, sucrose, and pyruvate as attractants for Leptospira cells; amino acids and vitamin B12 were found to be nonchemotactic or weakly chemotactic. This assay has the general applicability to further our understanding of leptospiral chemotaxis.  相似文献   

9.
Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus–host co-evolution that will be covered in the present review.  相似文献   

10.
11.
Vaccination is one of the most valuable weapons against infectious diseases and has led to a significant reduction in mortality and morbidity. However, for most viral hemorrhagic fevers caused by arenaviruses, no prophylactic vaccine is available. This is particularly problematic as these diseases are notoriously difficult to diagnose and treat. Lassa fever is globally the most important of the fevers caused by arenaviruses, potentially affecting millions of people living in endemic areas, particularly in Nigeria. Annually, an estimated 300,000 humans are infected and several thousands succumb to the disease. The successful development of the vaccine “Candid#1” against Junin virus, the causative agent of Argentine hemorrhagic fever, proved that an effective arenavirus vaccine can be developed. Although several promising studies toward the development of a Lassa fever vaccine have been published, no vaccine candidate has been tested in human volunteers or patients. This review summarizes the immunology and other aspects of existing experimental arenavirus vaccine studies, discusses the reasons for the lack of a vaccine, and proposes a plan for overcoming the final hurdles toward clinical trials.  相似文献   

12.
13.

Background

We previously showed that irradiation to the carotid arteries of ApoE−/− mice accelerated the development of macrophage-rich, inflammatory atherosclerotic lesions, prone to intra-plaque hemorrhage. In this study we investigated the potential of anti-inflammatory and anti-coagulant intervention strategies to inhibit age-related and radiation-induced atherosclerosis.

Methodology/Principal Findings

ApoE−/− mice were given 0 or 14 Gy to the neck and the carotid arteries and aortic arches were harvested at 4 or 30 weeks after irradiation. Nitric oxide releasing aspirin (NCX 4016, 60 mg/kg/day) or aspirin (ASA, 30 or 300 mg/kg/day) were given continuously in the chow. High dose ASA effectively blocked platelet aggregation, while the low dose ASA or NCX 4016 had no significant effect on platelet aggregation. High dose ASA, but not NCX 4016, inhibited endothelial cell expression of VCAM-1 and thrombomodulin in the carotid arteries at 4 weeks after irradiation; eNOS and ICAM-1 levels were unchanged. After 30 weeks of follow-up, NCX 4016 significantly reduced the total number of lesions and the number of initial macrophage-rich lesions in the carotid arteries of unirradiated mice, but these effects were not seen in the brachiocephalic artery of the aortic arch (BCA). In contrast, high dose ASA lead to a decrease in the number of initial lesions in the BCA, but not in the carotid artery. Both high dose ASA and NCX 4016 reduced the collagen content of advanced lesions and increased the total plaque burden in the BCA of unirradiated mice. At 30 weeks after irradiation, neither NCX 4016 nor ASA significantly influenced the number or distribution of lesions, but high dose ASA lead to formation of collagen-rich “stable” advanced lesions in carotid arteries. The total plaque area of the irradiated BCA was increased after ASA, but the plaque burden was very low compared with the carotid artery.

Conclusions/Significance

The development and characteristics of radiation-induced atherosclerosis varied between different arteries but could not be circumvented by anti-inflammatory and anti-coagulant therapies. This implicates other underlying mechanistic pathways compared to age-related atherosclerosis.  相似文献   

14.
Measles virus (MV) entry requires at least 2 viral proteins, the hemagglutinin (H) and fusion (F) proteins. We describe the rescue and characterization of a measles virus with a specific mutation in the stalk region of H (I98A) that is able to bind normally to cells but infects at a lower rate than the wild type due to a reduction in fusion triggering. The mutant H protein binds to F more avidly than the parent H protein does, and the corresponding virus is more sensitive to inhibition by fusion-inhibitory peptide. We show that after binding of MV to its receptor, H-F dissociation is required for productive infection.Measles virus (MV) infection requires binding of the hemagglutinin (H) protein to its cognate receptors (9, 20, 21, 29, 41) while the fusion (F) protein triggers membrane lipid mixing and fusion. The H protein is a type II transmembrane homodimeric, disulfide-linked glycoprotein (33). The F protein is a type I membrane glycoprotein that exists as a homotrimeric complex. The protein is cleaved by furin in the trans-Golgi network into a metastable heterodimer with a membrane-spanning F1 domain and a membrane-distal F2 domain (16). Expressed alone, neither H nor F leads to membrane fusion, and therefore, both proteins are required and have to interact for productive infection of a target cell (46). There is evidence that these interactions start within the endoplasmic reticulum (34).The H proteins of Paramyxoviridae family members have a globular head with a six-blade β-propellor structure that is responsible for receptor binding (4, 7, 13), a stalk region composed of alpha-helical coiled coils (18, 48) that anchors the complex to the plasma membrane, and a short cytoplasmic domain that can interact with the matrix (M) protein and modulate fusion (2). Given that the F protein does not interact with a receptor on the target cell but undergoes conformational changes to enable membrane fusion, it seems likely that the F protein must interact with the H protein that enables fusion (14, 19, 23, 24, 35, 47). The molecular interactions between the F and H proteins are being increasingly understood (6, 8, 24, 25, 30, 35, 42). Hummel and Bellini have described a mutation in the H glycoprotein where threonine replaced isoleucine 98, which led to loss of fusion in chronically infected cells, but the virus was not rescued (15). Corey and Iorio performed alanine-scanning mutagenesis to determine the role of specific, membrane-proximal residues in the stalk region of the H protein responsible for H-F interactions (6). Substitution of alanine for specific residues in this region altered cell-to-cell fusion and the strength of the H-F interaction in transient-transfection experiments (6). Replacement of isoleucine with alanine at position 98 reduced fusion but did not significantly alter hemadsorption, implying that binding of the mutant H protein to CD46 was not affected (6). More recently, Paal et al. showed that the H protein can tolerate significant additions to its alpha-helical coiled coils without loss of binding or fusion in transient-transfection assays (30). Although these studies confirm the importance of the interactions between the H protein stalk and the metastable F protein for enabling fusion after receptor binding, the exact steps leading to fusion are still unclear. Moreover, studies evaluating H-F interactions were performed with transient protein expression and not in the presence of the actual virus. This is potentially an important shortcoming since the M protein can modulate infection and fusion (1).  相似文献   

15.
16.
ABSTRACT Entamoeba histolytica infection results in either asymptomatic colonization or invasion of host tissues leading generally to clinical symptoms. Zymodeme studies have demonstrated a correlation between isoenzyme profiles and clinical presentation. Thus, strains have been attributed to pathogenic or nonpathogenic groups according to their zymodeme. To determine the taxonomic relationship of these two groups, the isoenzyme profiles of 14 loci of 38 E. histolytica strains (pathogenic and nonpathogenic) and seven strains of other species of the same genus were analyzed. Genetic distance analysis clearly demonstrates the existence of two separate groups within the species E. histolytica .  相似文献   

17.
Cytomegalovirus-infected human fibroblasts are susceptible to lysis by natural killer cells and cytotoxic T cells. The purpose of this study was to determine whether non-lytic mechanisms might also contribute to the control of cytomegalovirus infection. The appearance of cytomegalovirus proteins in infected fibroblasts was determined by flow cytometry. Infected fibroblasts incubated with peripheral blood mononuclear cells for 3 days expressed less early and late proteins than fibroblasts incubated without peripheral blood mononuclear cells. Supernatants generated by the cocultivation of peripheral blood mononuclear cells with cytomegalovirus-infected fibroblasts inhibited the production of cytomegalovirus early and late proteins. The soluble factors in supernatants which contributed to the inhibitory effect were identified as interferons α, β and γ, and tumor necrosis factors α and β. The ability of supernatants to inhibit the production of cytomegalovirus early protein was mimicked by combinations of corresponding recombinant cytokines. The inhibition of cytomegalovirus protein production by cytokines produced by peripheral blood mononuclear cells may contribute to early containment of cytomegalovirus infection.  相似文献   

18.
19.
Cucurbit yellow vine disease (CYVD) is caused by disease-associated Serratia marcescens strains that have phenotypes significantly different from those of nonphytopathogenic strains. To identify the genetic differences responsible for pathogenicity-related phenotypes, we used a suppressive subtractive hybridization (SSH) strategy. S. marcescens strain Z01-A, isolated from CYVD-affected zucchini, was used as the tester, whereas rice endophytic S. marcescens strain R02-A (IRBG 502) was used as the driver. SSH revealed 48 sequences, ranging from 200 to 700 bp, that were present in Z01-A but absent in R02-A. Sequence analysis showed that a large proportion of these sequences resembled genes involved in synthesis of surface structures. By construction of a fosmid library, followed by colony hybridization, selection, and DNA sequencing, a phage gene cluster and a genome island containing a fimbrial-gene cluster were identified. Arrayed dot hybridization showed that the conservation of subtracted sequences among CYVD pathogenic and nonpathogenic S. marcescens strains varied. Thirty-four sequences were present only in pathogenic strains. Primers were designed based on one Z01-A-specific sequence, A79, and used in a multiplex PCR to discriminate between S. marcescens strains causing CYVD and those from other ecological niches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号