首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of increased cognitive load on visual search behavior and measures of gait performance during locomotion. Also, we investigated how personality traits, specifically the propensity to consciously control or monitor movements (trait movement ‘reinvestment’), impacted the ability to maintain effective gaze under conditions of cognitive load. Healthy young adults traversed a novel adaptive walking path while performing a secondary serial subtraction task. Performance was assessed using correct responses to the cognitive task, gaze behavior, stepping accuracy, and time to complete the walking task. When walking while simultaneously carrying out the secondary serial subtraction task, participants visually fixated on task-irrelevant areas ‘outside’ the walking path more often and for longer durations of time, and fixated on task-relevant areas ‘inside’ the walkway for shorter durations. These changes were most pronounced in high-trait-reinvesters. We speculate that reinvestment-related processes placed an additional cognitive demand upon working memory. These increased task-irrelevant ‘outside’ fixations were accompanied by slower completion rates on the walking task and greater gross stepping errors. Findings suggest that attention is important for the maintenance of effective gaze behaviors, supporting previous claims that the maladaptive changes in visual search observed in high-risk older adults may be a consequence of inefficiencies in attentional processing. Identifying the underlying attentional processes that disrupt effective gaze behaviour during locomotion is an essential step in the development of rehabilitation, with this information allowing for the emergence of interventions that reduce the risk of falling.  相似文献   

2.

Background

Numerous studies have reported on the healing powers of plants and nature, but there have not been so many instances of experimental research. In particular, there are very few psychological and physiological studies using tactile stimuli. This study examines the psychological and physiological effects of touching plant foliage by using an evaluation profile of the subjects’ impressions and investigating cerebral blood flow.

Methods

The subjects were 14 young Japanese men aged from 21 to 27 years (mean ± standard deviation: 23.6 ± 2.4). With their eyes closed, the subjects touched four different tactile samples including a leaf of natural pothos (Epipremnum aureum). The physiological indices were compared before and after each stimulus. Psychological indices were obtained using a ‘semantic differential’ method.

Results

The fabric stimulus gave people ‘soft’ and ‘rough’ impressions, ‘kind’, ‘peaceful’ and ‘pleasant’ feelings psychologically, and a sense of physiological calm. On the other hand, the metal stimulus gave people ‘cold’, ‘smooth’ and ‘hard’ impressions and an image of something ‘artificial’. The metal stimulus caused a stress response in human cerebral blood flow although its evaluation in terms of ‘pleasant or unpleasant’ was neutral. There were no remarkable differences between the stimuli of natural and artificial pothos compared with other types of stimulus psychologically. However, only the natural pothos stimulus showed a sense of physiological calm in the same appearance as the fabric stimulus.

Conclusions

This study shows that people experience an unconscious calming reaction to touching a plant. It is to be concluded that plants are an indispensable element of the human environment.  相似文献   

3.
A meaningful set of stimuli, such as a sequence of frames from a movie, triggers a set of different experiences. By contrast, a meaningless set of stimuli, such as a sequence of ‘TV noise’ frames, triggers always the same experience—of seeing ‘TV noise’—even though the stimuli themselves are as different from each other as the movie frames. We reasoned that the differentiation of cortical responses underlying the subject’s experiences, as measured by Lempel-Ziv complexity (incompressibility) of functional MRI images, should reflect the overall meaningfulness of a set of stimuli for the subject, rather than differences among the stimuli. We tested this hypothesis by quantifying the differentiation of brain activity patterns in response to a movie sequence, to the same movie scrambled in time, and to ‘TV noise’, where the pixels from each movie frame were scrambled in space. While overall cortical activation was strong and widespread in all conditions, the differentiation (Lempel-Ziv complexity) of brain activation patterns was correlated with the meaningfulness of the stimulus set, being highest in the movie condition, intermediate in the scrambled movie condition, and minimal for ‘TV noise’. Stimulus set meaningfulness was also associated with higher information integration among cortical regions. These results suggest that the differentiation of neural responses can be used to assess the meaningfulness of a given set of stimuli for a given subject, without the need to identify the features and categories that are relevant to the subject, nor the precise location of selective neural responses.  相似文献   

4.
Anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) has been proposed as a possible therapeutic rehabilitation technique for motor impairment. However, despite extensive investigation into the effects of anodal tDCS on motor output, there is little information on how anodal tDCS affects response processes. In this study, we used a cued go/nogo task with both directional and non-directional cues to assess the effects of anodal tDCS over the dominant (left) primary motor cortex on prepared and unprepared motor responses. Three experiments explored whether the effectiveness of tDCS varied with timing between stimulation and test. Healthy, right-handed young adults participated in a double-blind randomised controlled design with crossover of anodal tDCS and sham stimulation. In Experiment 1, twenty-four healthy young adults received anodal tDCS over dominant M1 at least 40 mins before task performance. In Experiment 2, eight participants received anodal tDCS directly before task performance. In Experiment 3, twenty participants received anodal tDCS during task performance. In all three experiments, participants responded faster to directional compared to non-directional cues and with their right hand. However, anodal tDCS had no effect on go/nogo task performance at any stimulation – test interval. Bayesian analysis confirmed that anodal stimulation had no effect on response speed. We conclude that anodal tDCS over M1 does not improve response speed of prepared or unprepared responses of young adults in a go/nogo task.  相似文献   

5.
Human beings have a strong tendency to imitate. Evidence from motor priming paradigms suggests that people automatically tend to imitate observed actions such as hand gestures by performing mirror-congruent movements (e.g., lifting one’s right finger upon observing a left finger movement; from a mirror perspective). Many observed actions however, do not require mirror-congruent responses but afford complementary (fitting) responses instead (e.g., handing over a cup; shaking hands). Crucially, whereas mirror-congruent responses don''t require physical interaction with another person, complementary actions often do. Given that most experiments studying motor priming have used stimuli devoid of contextual information, this space or interaction-dependency of complementary responses has not yet been assessed. To address this issue, we let participants perform a task in which they had to mirror or complement a hand gesture (fist or open hand) performed by an actor depicted either within or outside of reach. In three studies, we observed faster reaction times and less response errors for complementary relative to mirrored hand movements in response to open hand gestures (i.e., ‘hand-shaking’) irrespective of the perceived interpersonal distance of the actor. This complementary effect could not be accounted for by a low-level spatial cueing effect. These results demonstrate that humans have a strong and automatic tendency to respond by performing complementary actions. In addition, our findings underline the limitations of manipulations of space in modulating effects of motor priming and the perception of affordances.  相似文献   

6.
We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form (‘what’) and stimulus occurrence (‘when’). Consequently, behaviour is optimal when we can anticipate both the ‘what’ and ‘when’ dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention.  相似文献   

7.
Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16–30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18–30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a ‘long sleep’ cluster, a ‘disrupted sleep’ cluster, and a ‘delayed and disrupted sleep’ cluster. Circadian clusters included a ‘strong circadian’ cluster, a ‘weak circadian’ cluster, and a ‘delayed circadian’ cluster. Medication use differed between clusters. The ‘long sleep’ cluster displayed significantly worse visual memory performance compared to the ‘disrupted sleep’ cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in young adults early in the course of affective illness.  相似文献   

8.
In conversation, negative responses to invitations, requests, offers, and the like are more likely to occur with a delay–conversation analysts talk of them as dispreferred. Here we examine the contrastive cognitive load ‘yes’ and ‘no’ responses make, either when relatively fast (300 ms after question offset) or delayed (1000 ms). Participants heard short dialogues contrasting in speed and valence of response while having their EEG recorded. We found that a fast ‘no’ evokes an N400-effect relative to a fast ‘yes’; however, this contrast disappeared in the delayed responses. ''No'' responses, however, elicited a late frontal positivity both if they were fast and if they were delayed. We interpret these results as follows: a fast ‘no’ evoked an N400 because an immediate response is expected to be positive–this effect disappears as the response time lengthens because now in ordinary conversation the probability of a ‘no’ has increased. However, regardless of the latency of response, a ‘no’ response is associated with a late positivity, since a negative response is always dispreferred. Together these results show that negative responses to social actions exact a higher cognitive load, but especially when least expected, in immediate response.  相似文献   

9.

Background

We focused on whether changes in the occupational status of older male adults can be influenced by social engagement and health status measured at the baseline.

Methods

This study used a sample of the Korean Longitudinal Study of Aging (KLoSA), and the study population was restricted to 1.531 men who were aged 55 to 80 years at the 2006 baseline survey and participated in the second survey in 2008. Social engagement and health status, measured by the number of chronic diseases, grip strength, and depressive symptoms as well as covariates (age, marital status, educational level, and household income) were based on data from the 2006 baseline survey. Occupational engagement over the first and second survey was divided into four categories: ‘consistently employed’ (n = 892), ‘employed-unemployed’ (n = 152), ‘unemployed-employed’ (n = 138), and ‘consistently unemployed’ (n = 349).

Results

In the multinomial model, the ‘consistently employed’ and ‘unemployed-employed’ groups had significantly higher social engagement (1.19 and 1.32 times, respectively) than the referent. The number of chronic diseases was significantly associated with four occupational changes, and the ‘unemployed-employed’ had the fewest chronic conditions.

Conclusion

Our finding suggests that social engagement and health status are likely to affect opportunities to continue working or to start working for older male adults.  相似文献   

10.
Multisensory integration is synergistic—input from one sensory modality might modulate the behavioural response to another. Work in flies has shown that a small visual object presented in the periphery elicits innate aversive steering responses in flight, likely representing an approaching threat. Object aversion is switched to approach when paired with a plume of food odour. The ‘open-loop’ design of prior work facilitated the observation of changing valence. How does odour influence visual object responses when an animal has naturally active control over its visual experience? In this study, we use closed-loop feedback conditions, in which a fly''s steering effort is coupled to the angular velocity of the visual stimulus, to confirm that flies steer toward or ‘fixate’ a long vertical stripe on the visual midline. They tend either to steer away from or ‘antifixate’ a small object or to disengage active visual control, which manifests as uncontrolled object ‘spinning’ within this experimental paradigm. Adding a plume of apple cider vinegar decreases the probability of both antifixation and spinning, while increasing the probability of frontal fixation for objects of any size, including a normally typically aversive small object.  相似文献   

11.
This study investigated how children’s postural control adapts to changes in the visual environment and whether they use previous experience to adjust postural responses to following expositions. Four-, eight-, and twelve-year-old children (10 in each group) and 10 young adults stood upright inside of a moving room during eight trials each lasting one-minute. In the first trial, the room was stationary. In the following seven trials, the room oscillated at 0.2 Hz, amplitude of 0.5 cm, with the exception of the fifth trial, in which the room oscillated with amplitude of 3.2 cm. Body sway responses of young adults and older children down-weighted more to the increased visual stimulus amplitude when compared to younger children. In addition, four- and eight-year-old children quickly up-weighted body responses to visual stimulus in the subsequent two trials after the high amplitude trial. Sway variability decreased with age and was greatest during the high-amplitude trial. These results indicate that four year olds have already developed the adaptive capability to quickly down-weight visual influences. However, the increased gain values and residual variability observed for the younger children suggest that they have not fully calibrated their adaptive response to that of the young adults tested. Moreover, younger children do not carry over their previous experience from the sensorial environment to adapt to future changes.  相似文献   

12.
The human visual system has evolved to be highly sensitive to visual information about other persons and their movements as is illustrated by the effortless perception of point-light figures or ‘biological motion’. When presented orthographically, a point-light walker is interpreted in two anatomically plausible ways: As ‘facing the viewer’ or as ‘facing away’ from the viewer. However, human observers show a ‘facing bias’: They perceive such a point-light walker as facing towards them in about 70-80% of the cases. In studies exploring the role of social and biological relevance as a possible account for the facing bias, we found a ‘figure gender effect’: Male point-light figures elicit a stronger facing bias than female point-light figures. Moreover, we also found an ‘observer gender effect’: The ‘figure gender effect’ was stronger for male than for female observers. In the present study we presented to 11 males and 11 females point-light walkers of which, very subtly, the perspective information was manipulated by modifying the earlier reported ‘perspective technique’. Proportions of ‘facing the viewer’ responses and reaction times were recorded. Results show that human observers, even in the absence of local shape or size cues, easily pick up on perspective cues, confirming recent demonstrations of high visual sensitivity to cues on whether another person is potentially approaching. We also found a consistent difference in how male and female observers respond to stimulus variations (figure gender or perspective cues) that cause variations in the perceived in-depth orientation of a point-light walker. Thus, the ‘figure gender effect’ is possibly caused by changes in the relative locations and motions of the dots that the perceptual system tends to interpret as perspective cues. Third, reaction time measures confirmed the existence of the facing bias and recent research showing faster detection of approaching than receding biological motion.  相似文献   

13.
Traditionally, the information content of the neural response is quantified using statistics of the responses relative to stimulus onset time with the assumption that the brain uses onset time to infer stimulus identity. However, stimulus onset time must also be estimated by the brain, making the utility of such an approach questionable. How can stimulus onset be estimated from the neural responses with sufficient accuracy to ensure reliable stimulus identification? We address this question using the framework of colour coding by the archer fish retinal ganglion cell. We found that stimulus identity, “what”, can be estimated from the responses of best single cells with an accuracy comparable to that of the animal''s psychophysical estimation. However, to extract this information, an accurate estimation of stimulus onset is essential. We show that stimulus onset time, “when”, can be estimated using a linear-nonlinear readout mechanism that requires the response of a population of 100 cells. Thus, stimulus onset time can be estimated using a relatively simple readout. However, large nerve cell populations are required to achieve sufficient accuracy.

Authors Summary

In our interaction with the environment we are flooded with a stream of numerous objects and events. Our brain needs to understand the nature of these complex and rich stimuli in order to react. Research has shown ways in which a ‘what’ stimulus was presented can be encoded by the neural responses. However, to understand ‘what was the nature of the stimulus’ the brain needs to know ‘when’ the stimulus was presented. Here, we investigated how the onset of visual stimulus can be signalled by the retina to higher brain regions. We used archer fish as a framework to test the notion that the answer to the question of ‘when’ something has been presented lies within the larger cell population, whereas the answer to the question of ‘what’ has been presented may be found at the single-neuron level. The utility of the archer fish as model animal stems from its remarkable ability to shoot down insects settling on the foliage above the water level, and its ability to distinguish between artificial targets. Thus, the archer fish can provide the fish equivalent of a monkey or a human that can report psychophysical decisions.  相似文献   

14.
A central tenet of evolutionary explanations for ageing is that the strength of selection wanes with age. However, data on age-specific expression and benefits of sexually selected traits are lacking—particularly for traits subject to sexual conflict. We addressed this by using as a model the responses of Drosophila melanogaster females of different ages to receipt of sex peptide (SP), a seminal fluid protein transferred with sperm during mating. SP can mediate sexual conflict, benefitting males while causing fitness costs in females. Virgin and mated females of all ages showed significantly reduced receptivity in response to SP. However, only young virgin females also showed increased egg laying; hence, there was a narrow demographic window of maximal responses to SP. Males gained significant ‘per mating’ fitness benefits only when mating with young females. The pattern completely reversed in matings with older females, where SP transfer was costly. The overall benefits of SP transfer (hence opportunity for selection) therefore reversed with female age. The data reveal a new example of demographic variation in the strength of selection, with convergence and conflicts of interest between males and ageing females occurring over different facets of responses to a sexually antagonistic trait.  相似文献   

15.
The present study was designed to investigate the brain functional architecture that subserves visuo-spatial and motor processing in highly skilled individuals. By using functional magnetic resonance imaging (fMRI), we measured brain activity while eleven Formula racing-car drivers and eleven ‘naïve’ volunteers performed a motor reaction and a visuo-spatial task. Tasks were set at a relatively low level of difficulty such to ensure a similar performance in the two groups and thus avoid any potential confounding effects on brain activity due to discrepancies in task execution. The brain functional organization was analyzed in terms of regional brain response, inter-regional interactions and blood oxygen level dependent (BOLD) signal variability. While performance levels were equal in the two groups, as compared to naïve drivers, professional drivers showed a smaller volume recruitment of task-related regions, stronger connections among task-related areas, and an increased information integration as reflected by a higher signal temporal variability. In conclusion, our results demonstrate that, as compared to naïve subjects, the brain functional architecture sustaining visuo-motor processing in professional racing-car drivers, trained to perform at the highest levels under extremely demanding conditions, undergoes both ‘quantitative’ and ‘qualitative’ modifications that are evident even when the brain is engaged in relatively simple, non-demanding tasks. These results provide novel evidence in favor of an increased ‘neural efficiency’ in the brain of highly skilled individuals.  相似文献   

16.
We often need to rapidly change our mind about perceptual decisions in order to account for new information and correct mistakes. One fundamental, unresolved question is whether information processed prior to a decision being made (‘pre-decisional information’) has any influence on the likelihood and speed with which that decision is reversed. We investigated this using a luminance discrimination task in which participants indicated which of two flickering greyscale squares was brightest. Following an initial decision, the stimuli briefly remained on screen, and participants could change their response. Using psychophysical reverse correlation, we examined how moment-to-moment fluctuations in stimulus luminance affected participants’ decisions. This revealed that the strength of even the very earliest (pre-decisional) evidence was associated with the likelihood and speed of later changes of mind. To account for this effect, we propose an extended diffusion model in which an initial ‘snapshot’ of sensory information biases ongoing evidence accumulation.  相似文献   

17.
The ''Positive Effect'' is defined as the phenomenon of preferential cognitive processing of positive affective information, and avoidance or dismissal of negative affective information in the social environment. The ‘Positive Effect’ is found for older people compared with younger people in western societies and is believed to reflect a preference for positive emotional regulation in older adults. It is not known whether such an effect is Universal, and in East Asian cultures, there is a highly controversial debate concerning this question. In the current experiment we explored whether Chinese older participants showed a ''Positive Effect'' when they inspected picture pairs that were either a positive or a negative picture presented with a neutral picture, or a positive and negative picture paired together. The results indicated that both groups of participants showed an attentional bias to both pleasant (more processing of) and unpleasant pictures (initial orienting to) when these were paired with neutral pictures. When pleasant and unpleasant pictures were paired together both groups showed an initial orientation bias for the pleasant picture, but the older participants showed this bias for initial orienting and increased processing measures, providing evidence of a ‘Positive Effect’ in older Chinese adults.  相似文献   

18.
Radial expanding optic flow is a visual consequence of forward locomotion. Presented on screen, it generates illusionary forward self-motion, pointing at a close vision-gait interrelation. As particularly parkinsonian gait is vulnerable to external stimuli, effects of optic flow on motor-related cerebral circuitry were explored with functional magnetic resonance imaging in healthy controls (HC) and patients with Parkinson’s disease (PD). Fifteen HC and 22 PD patients, of which 7 experienced freezing of gait (FOG), watched wide-field flow, interruptions by narrowing or deceleration and equivalent control conditions with static dots. Statistical parametric mapping revealed that wide-field flow interruption evoked activation of the (pre-)supplementary motor area (SMA) in HC, which was decreased in PD. During wide-field flow, dorsal occipito-parietal activations were reduced in PD relative to HC, with stronger functional connectivity between right visual motion area V5, pre-SMA and cerebellum (in PD without FOG). Non-specific ‘changes’ in stimulus patterns activated dorsolateral fronto-parietal regions and the fusiform gyrus. This attention-associated network was stronger activated in HC than in PD. PD patients thus appeared compromised in recruiting medial frontal regions facilitating internally generated virtual locomotion when visual motion support falls away. Reduced dorsal visual and parietal activations during wide-field optic flow in PD were explained by impaired feedforward visual and visuomotor processing within a magnocellular (visual motion) functional chain. Compensation of impaired feedforward processing by distant fronto-cerebellar circuitry in PD is consistent with motor responses to visual motion stimuli being either too strong or too weak. The ‘change’-related activations pointed at covert (stimulus-driven) attention.  相似文献   

19.
Pigeon ‘milk’ and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon ‘milk’. Therefore, using a chicken model, we investigated the effect of pigeon ‘milk’ on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon ‘milk’ had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon ‘milk’-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon ‘milk’-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon ‘milk’, as well as being directly seeded by bacteria present in pigeon ‘milk’. Our results demonstrate that pigeon ‘milk’ has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon ‘lactation’ and mammalian lactation evolved independently but resulted in similarly functional products.  相似文献   

20.
Pulse is often understood as a feature of a (quasi-) isochronous event sequence that is picked up by an entrained subject. However, entrainment does not only occur between quasi-periodic rhythms. This paper demonstrates the expression of pulse by subjects listening to non-periodic musical stimuli and investigates the processes behind this behaviour. The stimuli are extracts from the introductory sections of North Indian (Hindustani) classical music performances (alap, jor and jhala). The first of three experiments demonstrates regular motor responses to both irregular alap and more regular jor sections: responses to alap appear related to individual spontaneous tempi, while for jor they relate to the stimulus event rate. A second experiment investigated whether subjects respond to average periodicities of the alap section, and whether their responses show phase alignment to the musical events. In the third experiment we investigated responses to a broader sample of performances, testing their relationship to spontaneous tempo, and the effect of prior experience with this music. Our results suggest an entrainment model in which pulse is understood as the experience of one’s internal periodicity: it is not necessarily linked to temporally regular, structured sensory input streams; it can arise spontaneously through the performance of repetitive motor actions, or on exposure to event sequences with rather irregular temporal structures. Greater regularity in the external event sequence leads to entrainment between motor responses and stimulus sequence, modifying subjects’ internal periodicities in such a way that they are either identical or harmonically related to each other. This can be considered as the basis for shared (rhythmic) experience and may be an important process supporting ‘social’ effects of temporally regular music.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号