首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of phenotypical plasticity in ecological speciation and the evolution of sexual isolation remains largely unknown. We investigated whether or not divergent host plant use in an herbivorous insect causes assortative mating by phenotypically altering traits involved in mate recognition. We found that males of the mustard leaf beetle Phaedon cochleariae preferred to mate with females that were reared on the same plant species to females provided with a different plant species, based on divergent cuticular hydrocarbon profiles that serve as contact pheromones. The cuticular hydrocarbon phenotypes of the beetles were host plant specific and changed within 2 weeks after a shift to a novel host plant species. We suggest that plant-induced phenotypic divergence in mate recognition cues may act as an early barrier to gene flow between herbivorous insect populations on alternative host species, preceding genetic divergence and thus, promoting ecological speciation.  相似文献   

2.
Learning and other forms of phenotypic plasticity have been suggested to enhance population divergence. Mate preferences can develop by learning, and species recognition might not be entirely genetic. We present data on female mate preferences of the banded demoiselle (Calopteryx splendens) that suggest a role for learning in population divergence and species recognition. Populations of this species are either allopatric or sympatric with a phenotypically similar congener (C. virgo). These two species differ mainly in the amount of wing melanization in males, and wing patches thus mediate sexual isolation. In sympatry, sexually experienced females discriminate against large melanin wing patches in heterospecific males. In contrast, in allopatric populations within the same geographic region, females show positive (“open‐ended”) preferences for such large wing patches. Virgin C. splendens females do not discriminate against heterospecific males. Moreover, physical exposure experiments of such virgin females to con‐ or hetero‐specific males significantly influences their subsequent mate preferences. Species recognition is thus not entirely genetic and it is partly influenced by interactions with mates. Learning causes pronounced population divergence in mate preferences between these weakly genetically differentiated populations, and results in a highly divergent pattern of species recognition at a small geographic scale.  相似文献   

3.
Early stages of lineage divergence in insect herbivores are often related to shifts in host plant use and divergence in mating capabilities, which may lead to sexual isolation of populations of herbivorous insects. We examined host preferences, degree of differentiation in mate choice, and divergence in cuticular morphology using near‐infrared spectroscopy in the grasshopper Hesperotettix viridis aiming to understand lineage divergence. In Kansas (USA), H. viridis is an oligophagous species feeding on Gutierrezia and Solidago host species. To identify incipient mechanisms of lineage divergence and isolation, we compared host choice, mate choice, and phenotypic divergence among natural grasshopper populations in zones of contact with populations encountering only one of the host species. A significant host‐based preference from the two host groups was detected in host‐paired feeding preference studies. No‐choice mate selection experiments revealed a preference for individuals collected from the same host species independent of geographic location, and little mating was observed between individuals collected from different host species. Female mate choice tests between males from the two host species resulted in 100% fidelity with respect to host use. Significant differentiation in colour and cuticular composition of individuals from different host plants was observed, which correlated positively with host choice and mate choice. No evidence for reinforcement in the zone of contact was detected, suggesting that divergent selection for host plant use promotes sexual isolation in this species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 866–878.  相似文献   

4.
Sexual selection of high-quality mates can conflict with species recognition if traits that govern intraspecific mate preferences also influence interspecific recognition. This conflict might be resolved by developmental plasticity and learned mate preferences, which could drive preference divergence in populations that differ in local species composition. We integrate field and laboratory experiments on two calopterygid damselfly species with population genetic data to investigate how sex differences in developmental plasticity affect population divergence in the face of gene flow. Whereas male species recognition is fixed at emergence, females instead learn to recognize heterospecifics. Females are therefore more plastic in their mate preferences than males. We suggest that this results from sex differences in the balance between sexual selection for high-quality mates and selection for species recognition. As a result of these sex differences, females develop more pronounced population divergence in their mate preferences compared with males. Local ecological community context and presence of heterospecifics in combination with sex differences in plasticity and canalization therefore shape population divergence in mate preferences. As ongoing environmental change and habitat fragmentation bring formerly allopatric species into secondary contact, developmental plasticity of mate preferences in either or both sexes might facilitate coexistence and prevent local species extinction.  相似文献   

5.
Abstract There is accumulating evidence that sexual interactions among species (reproductive interference) could have dramatic effects for species’ coexistence. It has been shown that the fitness of individuals can be substantially reduced as a consequence of reproductive interference. This might subsequently lead to displacement of a species (sexual exclusion). On the other hand, some evolutionary and ecological mechanisms might enable species to coexist, such as the divergence of mate recognition systems (reproductive character displacement), habitat partitioning, clumped dispersion patterns or different colonization capabilities. We have previously shown that the two ground‐hopper species Tetrix subulata and Tetrix ceperoi interact sexually in the laboratory as well as in the field. At sites where both species co‐occur niche overlap was high, suggesting that coexistence is maintained by different niche breadths rather than by habitat partitioning. To test the hypothesis that habitat partitioning does not contribute to species’ coexistence, we examined whether allotopic and syntopic populations of these two species differ in niche overlap (competitive release). Our results show that niche overlap is higher in syntopic than in allotopic populations, suggesting that the site‐specific habitat structure (heterogeneity) has a stronger influence on microhabitat utilization than the presence of heterospecifics. Hence, our data do not support the hypothesis that habitat partitioning plays a substantial role for the coexistence of these sexually interacting species.  相似文献   

6.
Sexual selection acting on small initial differences in mating signals and mate preferences can enhance signal–preference codivergence and reproductive isolation during speciation. However, the origin of initial differences in sexual traits remains unclear. We asked whether biotic environments, a source of variation in sexual traits, may provide a general solution to this problem. Specifically, we asked whether genetic variation in biotic environments provided by host plants can result in signal–preference phenotypic covariance in a host‐specific, plant‐feeding insect. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess patterns of variation in male mating signals and female mate preferences induced by genetic variation in host plants. We employed a novel implementation of a quantitative genetics method, rearing field‐collected treehoppers on a sample of naturally occurring replicated host plant clone lines. We found remarkably high signal–preference covariance among host plant genotypes. Thus, genetic variation in biotic environments influences the sexual phenotypes of organisms living on those environments in a way that promotes assortative mating among environments. This consequence arises from conditions likely to be common in nature (phenotypic plasticity and variation in biotic environments). It therefore offers a general answer to how divergent sexual selection may begin.  相似文献   

7.
Mate signaling systems, because of their role in assortative mating, have often been implicated in the origins of evolutionary independence between lineages. We investigated three sources of phenotypic plasticity in mating signals with potential relevance to assortative mating in a species in the Enchenopa binotata complex of treehoppers. This group has been a model for speciation in sympatry through shifts to novel host plants. Host shifts result in partial reproductive isolation in Enchenopa binotata because of their effects on life history timing, but interbreeding is still possible if there is dispersal and some overlap of mating periods. Courtship in these plant‐feeding insects is mediated by plant‐borne vibrational signals. We asked whether variation in male mate signaling behavior is influenced by plant substrate, age, or size, each of which may play a role in interactions among host‐shifted populations. Males produced fewer, shorter signals when on non‐hosts than when on hosts. However, there were no effects of age or size on signal variation. Significant repeatability of some signal features (carrier frequency and the number of signals produced in a signaling bout) is consistent with the presence of genetic variation and thus the potential to respond to selection. Our results suggest that plasticity in mate signaling systems, and in particular in male mate searching behavior on hosts and non‐hosts, may have the potential to reduce interbreeding between populations that use different species of host plant.  相似文献   

8.
A combination of divergent natural and sexual selection is a powerful cause of speciation. This conjunction of evolutionary forces may often occur when divergence is initiated by ecological differences between populations because local adaptation to new resources can lead to changes in sexual selection. The hypothesis that differences in resource use contribute to the evolution of reproductive isolation by altering the nature of sexual selection predicts that: (1) differences in sexual traits, such as signals and preferences, are an important source of reproductive isolation between species using different resources; (2) there are identifiable sources of selection on sexual traits that differ between species using different resources; and (3) signals vary between populations using different resources to a larger extent than between populations using the same resource at different localities. Testing these predictions requires a group of closely‐related species or populations that specialize on different resources and for which the traits involved in mate choice are known. The Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) are host plant specialists in which speciation is associated with shifts to novel host plants. Mating in this complex is preceded by an exchange of vibrational signals transmitted through host plant stems, and the signal traits important for mate choice have been identified. In the E. binotata complex, previous work has supported the first two predictions: (1) signal differences between species are important in mate recognition and (2) host shifts can alter both the trait values favoured by sexual selection and the evolutionary response to that selection. In the present study, we tested the last prediction by conducting a large‐scale study of mating signal variation within and between the 11 species in the complex. We find that differences in host use are strongly associated with differences in signal traits important for mate recognition. This result supports the hypothesis that hosts shifts have led to speciation in this group in part through their influence on divergence in mate communication systems. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 60–72.  相似文献   

9.
Sperm‐dependent asexual species must coexist with a sexual species (i.e. a sperm source) to reproduce. The maintenance of this coexistence, and hence the persistence of sperm‐dependent asexual species, may depend on ecological niche separation or preference by males for conspecific (i.e. sexual) mates. We first modified an analytical model to consider both of these mechanisms acting simultaneously on the coexistence of the two species. Our model indicates that a small amount of niche separation between parental species and hybrids can facilitate coexistence by weakening the requirement for male mate preference. We also estimated niche separation empirically in the Chrosomus (formerly Phoxinus) sexual‐asexual system based on diet overlap between sperm‐dependent asexuals and their two sexual host species. Diet overlap between the sexual species was not significant in either lake, whereas the sperm‐dependent asexual had an intermediate niche that overlapped significantly, but somewhat asymmetrically, with both sexual species. These empirical results were then used to parameterize our analytical model to predict the minimum strength of male mate preference required to maintain coexistence in each lake. Some male mate preference is likely required to maintain coexistence in the Chrosomus system, but the minimum required preference depends on the severity of density dependence. Future empirical work on understanding coexistence in sperm‐dependent asexual systems would benefit from taking both niche separation and mate choice into account, and from simultaneous empirical estimates of male mate choice, niche separation, and density dependence.  相似文献   

10.

A growing body of research posits a central role for mating signals in speciation and the reproductive isolation of species, yet there has been relatively little consideration of mating signal evolution within macroevolutionary theory. Factors that influence the divergence of fertilization systems generally, and mating signals specifically, may incidentally influence rates of speciation and patterns of species sorting. Potential key processes include: genetic drift, natural selection (differential survival), selection for mate recognition, and sexual selection. This paper explores the integration of mating signal evolution into macroevolution and hierarchy theory, arguing that speciational patterns may frequently result from “effect sorting”; in which microevolutionary processes operating at the organismal level have macroevolutionary effects at the clade level. Preliminary evidence indicates that sexual selection is a widespread and potent evolutionary force that, together with other mechanisms, may have a large, though incidental impact on species sorting. The Mate Competition Hypothesis is here proposed to account for this possibility, postulating that heritable, clade‐specific variations in the intensity of sexual selection and the potential breadth of signal‐receiver systems contribute to divergent patterns of species‐richness. Several examples from the vertebrate fossil record are consistent with this hypothesis.  相似文献   

11.
Similar to resource competition, reproductive interference may hamper the coexistence of closely related species. Species that utilize similar signal channels during mate finding may face substantial fitness costs when they come into contact and demographic displacement of the inferior species (sexual exclusion) is a likely outcome of such interactions. The two ground‐hopper species Tetrix ceperoi and Tetrix subulata broadly overlap in their ranges and general habitat requirements, but rarely co‐occur on a local scale. Results from laboratory and field experiments suggest that this mosaic pattern of sympatry might be influenced by reproductive interference. Here, we examine the significance of sexual interactions for these species in the field and test hypotheses on mechanisms of coexistence. Our results show that heterospecific sexual interactions also occur under field conditions, but in contrast to the experiments T. ceperoi was not the inferior species. The number of male mating attempts of both species was strongly correlated with encounter frequencies. Males discriminated between the sexes but not between the species, suggesting an incomplete mate recognition system in both species. The analysis of microhabitat preferences and spatial distribution revealed that habitat partitioning is not a suitable mechanism of coexistence in this system. Instead, the costs of reproductive interference are substantially mitigated by different niche breadths leading to different degrees of aggregation. Despite a considerable niche overlap T. ceperoi displayed a stronger preference for bare ground and occurred more aggregated than T. subulata, which had a broader niche. These differences may reduce the frequencies of heterospecific encounters and interactions in the field. Our results demonstrate that coexistence in the presence of reproductive interference is comparable to resource competition, being strongly influenced by ecological traits of the involved species, such as niche breadth and dispersion pattern.  相似文献   

12.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

13.
Reproductive interference, interspecific sexual interactions that affect reproductive success, is found in various taxa and has been considered as a fundamental source of reproductive character displacement (RCD). Once RCD has occurred, persistent interspecific sexual interactions between species pairs are expected to diminish. However, reproductive interference has been reported from some species pairs that sympatrically coexist. Thus, the question arises, can reproductive interference persist even after RCD? We modeled the evolutionary dynamics of signal traits and mate recognition that determine whether interspecific sexual interactions occur. Our models incorporate male decision making based on the recognition of signal traits, whereas most previous models incorporate only female decision making in mate selection. Our models predict the following: (1) even when male decision making is incorporated, males remain promiscuous; (2) nevertheless, the frequency of interspecific mating is maintained at a low level after trait divergence; (3) the rarity of interspecific mating is due to strict female mate recognition and the consequent refusal of interspecific courtship by females; and (4) the frequency of interspecific mating becomes higher as the cost to females of refusing interspecific courtship increases. These predictions are consistent with empirical observations that males of some species engage in infrequent heterospecific mating. Thus, our models predict that reproductive interference can persist even after RCD occurred.  相似文献   

14.
Co‐occurrence of closely related species can cause behavioral interference in mating and increase hybridization risk. Theoretically, this could lead to the evolution of more species‐specific mate preferences and sexual signaling traits. Alternatively, females can learn to reject heterospecific males, to avoid male sexual interference from closely related species. Such learned mate discrimination could also affect conspecific mate preferences if females generalize from between species differences to prefer more species‐specific mating signals. Female damselflies of the banded demoiselle (Calopteryx splendens) learn to reject heterospecific males of the beautiful demoiselle (C. virgo) through direct premating interactions. These two species co‐occur in a geographic mosaic of sympatric and microallopatric populations. Whereas C. virgo males have fully melanized wings, male C. splendens wings are partly melanized. We show that C. splendens females in sympatry with C. virgo prefer smaller male wing patches in conspecific males after learning to reject heterospecific males. In contrast, allopatric C. splendens females with experimentally induced experience with C. virgo males did not discriminate against larger male wing patches. Wing patch size might indicate conspecific male quality in allopatry. Co‐occurrence with C. virgo therefore causes females to prefer conspecific male traits that are more species specific, contributing to population divergence and geographic variation in female mate preferences.  相似文献   

15.
Evolutionary divergence in behavioural traits related to mating may represent the initial stage of speciation. Direct selective forces are usually invoked to explain divergence in mate‐recognition traits, often neglecting a role for neutral processes or concomitant differentiation in ecological traits. We adopted a multi‐trait approach to obtain a deeper understanding of the mechanisms behind allopatric divergence in the Amazonian frog, Allobates femoralis. We tested the null hypothesis that geographic distance between populations correlates with genetic and phenotypic divergence, and compared divergence between mate‐recognition (acoustic) and ecological (coloration, body‐shape) traits. We quantified geographic variation in 39 phenotypic traits and a mitochondrial DNA marker among 125 individuals representing eight populations. Geographic variation in acoustic traits was pronounced and tracked the spatial genetic variation, which appeared to be neutral. Thus, the evolution of acoustic traits tracked the shared history of the populations, which is unexpected for pan‐Amazonian taxa or for mate‐recognition traits. Divergence in coloration appeared uncorrelated with genetic distance, and might be partly attributed to local selective pressures, and perhaps to Batesian mimicry. Divergence in body‐shape traits was low. The results obtained depict a complex evolutionary scenario and emphasize the importance of considering multiple traits when disentangling the forces behind allopatric divergence. ©2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 826–838.  相似文献   

16.
Abstract 1. Diversification of some highly host‐specific herbivorous insects may occur in allopatry, without shifts in host use. Such allopatric divergence may be accelerated by sexual selection operating on courtship displays. Wing size and shape may affect visual and vibrational courtship displays in tephritid fruit flies. Geometric morphometric methods were used to examine wings of six sympatric cryptic species in the neotropical genus Blepharoneura. All six species feed on flowers of the same species of host (Gurania spinulosa), a neotropical vine in the Cucurbitaceae. Three of the fly species court and mate in close proximity on the host. Thus, courtship behaviours could serve as important reproductive isolating mechanisms. Two sets of hypotheses were tested: (i) species differ in wing shape and wing size; and (ii) species are sexually dimorphic in wing size and wing shape. Wing size differed among a few species, but wing shape differed significantly among all six species. Sexual dimorphism in wing size was found in only one species, but sexual dimorphism in wing shape was found in two of the three species known to court on the same host plant. In the two sexually dimorphic species, wing shape differed among males, but not among females. This suggests that selection for reproductive character displacement might accelerate divergence in wing shape.  相似文献   

17.
Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male–male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.  相似文献   

18.
Sexual conflict can result in an ‘evolutionary arms race’ between males and females, with the evolution of sexual antagonistic traits used to resolve the conflict in favor of one sex over the other. We assessed the resolution of sexual conflict in a Hyalella amphipod species by manipulating putative sexually antagonistic traits in males and females and used mate‐guarding duration as our metric of conflict resolution. We discovered that large male posterior gnathopod size increased mate‐guarding duration, which suggests that it is a sexually antagonistic trait in this species. In contrast, female and male body size did not significantly affect mate‐guarding duration. Given that male posterior gnathopods show heightened condition dependence, future investigations should explore the interactive effects of sexual conflict and ecological context on trait evolution, phenotypic divergence, and speciation to elucidate the complex mechanisms involved in the evolution of biological diversity.  相似文献   

19.
We studied ecological divergence of host use ability in a generalist marine herbivore living in two distinct host plant assemblages. We collected Idotea balthica isopods from three populations dominated by the brown alga Fucus vesiculosus and three dominated by the seagrass Zostera marina. In two reciprocal common garden feeding experiments for adult and laboratory‐born juvenile isopods, we found that isopods from both assemblages performed better with their sympatric dominant host species than did isopods allopatric to this host. This indicates parallel divergence of populations according to the sympatric host plant assemblage. Furthermore, initial body size and body size‐dependent mortality differed between populations from the two assemblages. In nature, this may result in lower fitness of immigrants compared with that of residents and consequently reinforce divergence of the populations. Finally, we discuss how phenotypic plasticity and maternal and random effects may associate with the results.  相似文献   

20.
Sexual signals in cactophilic Drosophila mojavensis include cuticular hydrocarbons (CHCs), contact pheromones that mediate female discrimination of males during courtship. CHCs, along with male courtship songs, cause premating isolation between diverged populations, and are influenced by genotype × environment interactions caused by different host cacti. CHC profiles of mated and unmated adult flies from a Baja California and a mainland Mexico population of D. mojavensis reared on two host cacti were assayed to test the hypothesis that male CHCs mediate within‐population female discrimination of males. In multiple choice courtship trials, mated and unmated males differed in CHC profiles, indicating that females prefer males with particular blends of CHCs. Mated and unmated females significantly differed in CHC profiles as well. Adults in the choice trials had CHC profiles that were significantly different from those in pair‐mated adults from no‐choice trials revealing an influence of sexual selection. Females preferred different male CHC blends in each population, but the influence of host cactus on CHC variation was significant only in the mainland population indicating population‐specific plasticity in CHCs. Different groups of CHCs mediated female choice‐based sexual selection in each population suggesting that geographical and ecological divergence has the potential to promote divergence in mate communication systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号