首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The majority of the cysteine residues in the secreted proteins form disulfide bonds via protein disulfide isomerase (PDI)-mediated catalysis, stabilizing the enzyme activity. The role of PDI in cellulase production is speculative, as well as the possibility of PDI as a target for improving enzyme production efficiency of Trichoderma reesei, a widely used producer of enzyme for the production of lignocellulose-based biofuels and biochemicals. Here, we report that a PDI homolog, TrPDI2 in T. reesei exhibited a 36.94% and an 11.81% similarity to Aspergillus niger TIGA and T. reesei PDI1, respectively. The capability of TrPDI2 to recover the activity of reduced and denatured RNase by promoting refolding verified its protein disulfide isomerase activity. The overexpression of Trpdi2 increased the secretion and the activity of CBH1 at the early stage of cellulase induction. In addition, both the expression level and redox state of TrPDI2 responded to cellulase induction in T. reesei, providing sustainable oxidative power to ensure cellobiohydrolase maturation and production. The results suggest that TrPDI2 may contribute to cellobiohydrolase secretion by enhancing the capability of disulfide bond formation, which is essential for protein folding and maturation.  相似文献   

2.
Protein disulfide isomerase (PDI) supports proinsulin folding as chaperone and isomerase. Here, we focus on how the two PDI functions influence individual steps in the complex folding process of proinsulin. We generated a PDI mutant (PDI-aba'c) where the b' domain was partially deleted, thus abolishing peptide binding but maintaining a PDI-like redox potential. PDI-aba'c catalyzes the folding of human proinsulin by increasing the rate of formation and the final yield of native proinsulin. Importantly, PDI-aba'c isomerizes non-native disulfide bonds in completely oxidized folding intermediates, thereby accelerating the formation of native disulfide bonds. We conclude that peptide binding to PDI is not essential for disulfide isomerization in fully oxidized proinsulin folding intermediates.  相似文献   

3.
Rat liver protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds. We have developed an efficient method for its overproduction in Escherichia coli. Using a T7 RNA polymerase expression system, isolated yields of 15-30 mg/liter of recombinant rat PDI are readily obtained. Convenient purification of the enzyme from E. coli lysates involves ion-exchange (DEAE) chromatography combined with zinc chelate chromatography. The recombinant PDI shows catalytic activity identical to that of PDI isolated from bovine liver in both the reduction of insulin and the oxidative folding of ribonuclease A. The enzyme is expressed in E. coli as a soluble, cytoplasmic protein. After complete reduction and denaturation in 6 M guanidinium hydrochloride, PDI regains complete activity within 3 min after removal of the denaturant, implying that disulfide bonds are not essential for the maintenance of PDI tertiary structure. Both the protein isolated from E. coli and the protein isolated from liver contained free cysteine residues (1.8 +/- 0.2 and 1.4 +/- 0.3 SH/monomer, respectively).  相似文献   

4.
Although a critical role of microsomal transfer protein (MTP) has been recognized in the assembly of nascent apolipoprotein B (apoB)-containing lipoproteins, it remains unclear where and how MTP transfers lipids in the secretory pathway during the maturational process of apoB lipidation. The aims of this study were to determine whether MTP functions in the secretory pathway as well as in the endoplasmic reticulum and whether its large 97-kDa subunit interacts with the small 58-kDa protein disulfide isomerase (PDI) subunit and apoB, particularly in the Golgi apparatus. Using a high resolution immunogold approach combined with specific polyclonal antibodies, the large and small subunits of MTP were observed over the rough endoplasmic reticulum and the Golgi. Double immunocytochemical detection unraveled the colocalization of MTP and PDI as well as MTP and apoB in these same subcellular compartments. To confirm the spatial contact of these proteins, Golgi fractions were isolated, homogenized, and incubated with an anti-MTP large subunit antibody. Immunoprecipitates were applied on SDS-PAGE and then transferred on to nitrocellulose. Immunoblotting the membrane with PDI and apoB antibodies confirmed the colocalization of these proteins with MTP. Furthermore, MTP activity assay disclosed a substantial triglyceride transfer in the Golgi fractions. The occurrence of membrane-associated apoB in the Golgi, coupled with its interaction with active MTP, suggests an important role for the Golgi in the biogenesis of apoB-containing lipoproteins.  相似文献   

5.
X Lu  H F Gilbert  J W Harper 《Biochemistry》1992,31(17):4205-4210
Protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds by increasing the rate of disulfide bond rearrangements which normally occur during the folding process. The amino acid sequences of the N- and C-terminal redox active sites (PWCGHCK) in PDI are completely conserved from yeast to man and display considerable identity with the redox-active center of thioredoxin (EWCGPCK). Available data indicate that the two thiol/disulfide centers of PDI can function independently in the isomerase reaction and that the cysteine residues in each active site are essential for catalysis. To evaluate the role of residues flanking the active-site cysteines of PDI in function, a variety of mutations were introduced into the N-terminal active site of PDI within the context of both a functional C-terminal active site and an inactive C-terminal active site in which serine residues replaced C379 and C382. Replacement of non-cysteine residues (W34 to Ser, G36 to Ala, and K39 to Arg) resulted in only a modest reduction in catalytic activity in both the oxidative refolding of RNase A and the reduction of insulin (10-27%), independent of the status of the C-terminal active site. A somewhat larger effect was observed with the H37P mutation where approximately 80% of the activity attributable to the N-terminal domain (approximately 40%) was lost. However, the H37P mutant N-terminal site expressed within the context of an inactive C-terminal domain exhibits 30% activity, approximately 70% of the activity of the N-terminal site alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.  相似文献   

7.
Rancy PC  Thorpe C 《Biochemistry》2008,47(46):12047-12056
The flavin-dependent quiescin-sulfhydryl oxidase (QSOX) inserts disulfide bridges into unfolded reduced proteins with the reduction of molecular oxygen to form hydrogen peroxide. This work investigates how QSOX and protein disulfide isomerase (PDI) cooperate in vitro to generate native pairings in two unfolded reduced proteins: ribonuclease A (RNase, four disulfide bonds and 105 disulfide isomers of the fully oxidized protein) and avian riboflavin binding protein (RfBP, nine disulfide bonds and more than 34 million corresponding disulfide pairings). Experiments combining avian or human QSOX with up to 200 muM avian or human reduced PDI show that the isomerase is not a significant substrate of QSOX. Both reduced RNase and RfBP can be efficiently refolded in an aerobic solution containing micromolar concentrations of reduced PDI and nanomolar levels of QSOX without any added oxidized PDI or glutathione redox buffer. Refolding of RfBP is followed continuously using the complete quenching of the fluorescence of free riboflavin that occurs on binding to apo-RfBP. The rate of refolding is half-maximal at 30 muM reduced PDI when the reduced client protein (1 muM) is used in the presence of 30 nM QSOX. The use of high concentrations of PDI, in considerable excess over the folding protein client, reflects the concentration prevailing in the lumen of the endoplasmic reticulum and allows the redox poise of these in vitro experiments to be set with oxidized and reduced PDI. In the absence of either QSOX or redox buffer, the fastest refolding of RfBP is accomplished with excess reduced PDI and just enough oxidized PDI to generate nine disulfides in the protein client. These in vitro experiments are discussed in terms of current models for oxidative folding in the endoplasmic reticulum.  相似文献   

8.
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.  相似文献   

9.
Antibodies provide an excellent system to study the folding and assembly of all beta-sheet proteins and to elucidate the hierarchy of intra/inter chain disulfide bonds formation during the folding process of multimeric and multidomain proteins. Here, the folding process of the Fc fragment of the heavy chain of the antibody MAK33 was investigated. The Fc fragment consists of the C(H)3 and C(H)2 domains of the immunoglobulin heavy chain, both containing a single S-S bond. The folding process was investigated both in the absence and presence of the folding catalyst protein-disulfide isomerase (PDI), monitoring the evolution of intermediates by electrospray mass spectrometry. Moreover, the disulfide bonds present at different times in the folding mixture were identified by mass mapping to determine the hierarchy of disulfide bond formation. The analysis of the uncatalyzed folding showed that the species containing one intramolecular disulfide predominated throughout the entire process, whereas the fully oxidized Fc fragment never accumulated in significant amounts. This result suggests the presence of a kinetic trap during the Fc folding, preventing the one-disulfide-containing species (1S2H) to reach the fully oxidized protein (2S). The assignment of disulfide bonds revealed that 1S2H is a homogeneous species characterized by the presence of a single disulfide bond (Cys-130-Cys-188) belonging to the C(H)3 domain. When the folding experiments were carried out in the presence of PDI, the completely oxidized species accumulated and predominated at later stages of the process. This species contained the two native S-S bonds of the Fc protein. Our results indicate that the two domains of the Fc fragment fold independently, with a precise hierarchy of disulfide formation in which the disulfide bond, especially, of the C(H)2 domain requires catalysis by PDI.  相似文献   

10.
PDI enzymes are oxidoreductases that catalyze oxidation, reduction and isomerization of disulfide bonds in polypeptide substrates. We have previously identified an E. histolytica PDI enzyme (EhPDI) that exhibits oxidase activity in vivo. However, little is known about the specific role of its redox-related structural features on the enzymatic activity. Here, we have studied the in vivo oxidative folding of EhPDI by mutagenic analysis and functional complementation assays as well as the in vitro oxidative folding and reductive activities by comparative kinetics using functional homologues in standard assays. We have found that the active-site cysteine residues of the functional domains (Trx-domains) are essential for catalysis of disulfide bond formation in polypeptides and proteins, such as the bacterial alkaline phosphatase. Furthermore, we have shown that the recombinant EhPDI enzyme has some typical properties of PDI enzymes: oxidase and reductase activities. These activities were comparable to those observed for other functional equivalents, such as bovine PDI or bacterial thioredoxin, under the same experimental conditions. These findings will be helpful for further studies intended to understand the physiological role of EhPDI.  相似文献   

11.
During the maturation of extracellular proteins, disulfide bonds that chemically cross-link specific cysteines are often added to stabilize a protein or to join it covalently to other proteins. Disulfide formation, which requires a change in the covalent structure of the protein, occurs as the protein folds into its three-dimensional structure. In the eukaryotic endoplasmic reticulum and in the bacterial periplasm, an elaborate system of chaperones and folding catalysts ensure that disulfides connect the proper cysteines and that the folding protein does not make improper interactions. This review focuses specifically on one of these folding assistants, protein disulfide isomerase (PDI), an enzyme that catalyzes disulfide formation and isomerization and a chaperone that inhibits aggregation.  相似文献   

12.
The use of a high-throughput technique to perform a pilot screen for Leishmania major protein disulfide isomerase (LmPDI) inhibitors identification is reported. In eukaryotic cells, protein disulfide isomerase (PDI) plays a crucial role in protein folding by catalyzing the rearrangement of disulfide bonds in substrate proteins following their synthesis. LmPDI displays similar domain structure organization and functional properties to other PDI family members and is involved in Leishmania virulence. The authors used a method based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol. The screen of a small library of 1920 compounds was performed in a 384-well format and led to the identification of 27 compounds with inhibitory activity against LmPDI. The authors further tested the cytotoxicity of these compounds using Jurkat cells as well as their effect on Leishmania donovani amastigotes using high-content analysis. Results show hexachlorophene and a mixture of theaflavin monogallates inhibit Leishmania multiplication in infected macrophages derived from THP-1 cells, although the inhibitory effect on LmPDI enzymatic activity does not necessarily correlate with the antileishmanial activity.  相似文献   

13.
Protein disulfide isomerase (PDI) functions as an isomerase to catalyze thiol:disulfide exchange, as a chaperone to assist protein folding, and as a subunit of prolyl-4-hydroxylase and microsomal triglyceride transfer protein. At a lower concentration of 0.2 microm, PDI facilitated the aggregation of unfolded rabbit muscle creatine kinase (CK) and exhibited anti-chaperone activity, which was shown to be mainly due to the hydrophobic interactions between PDI and CK and was independent of the cross-linking of disulfide bonds. At concentrations above 1 microm, PDI acted as a protector against aggregation but an inhibitor of reactivation during CK refolding. The inhibition effect of PDI on CK reactivation was further characterized as due to the formation of PDI-CK complexes through intermolecular disulfide bonds, a process involving Cys-36 and Cys-295 of PDI. Two disulfide-linked complexes containing both PDI and CK were obtained, and the large, soluble aggregates around 400 kDa were composed of 1 molecule of tetrameric PDI and 2 molecules of inactive intermediate dimeric CK, whereas the smaller one, around 200 kDa, was formed by 1 dimeric PDI and 1 dimeric CK. To our knowledge this is the first study revealing that PDI could switch its conformation from dimer to tetramer in its functions as a foldase. According to the observations in this research and our previous study of the folding pathways of CK, a working model was proposed for the molecular mechanism of CK refolding catalyzed by PDI.  相似文献   

14.
Microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein (apo) B-containing lipoproteins. Previously, we demonstrated that the N-terminal 1,000 residues of apoB (apoB:1000) are necessary for the initiation of apoB-containing lipoprotein assembly in rat hepatoma McA-RH7777 cells and that these particles are phospholipid (PL) rich. To determine if the PL transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB:1000-containing lipoproteins, we employed microRNA-based short hairpin RNAs (miR-shRNAs) to silence Mttp gene expression in parental and apoB:1000-expressing McA-RH7777 cells. This approach led to 98% reduction in MTP protein levels in both cell types. Metabolic labeling studies demonstrated a drastic 90–95% decrease in the secretion of rat endogenous apoB100-containing lipoproteins in MTP-deficient McA-RH7777 cells compared with cells transfected with negative control miR-shRNA. A similar reduction was observed in the secretion of rat endogenous apoB48 under the experimental conditions employed. In contrast, MTP absence had no significant effect on the synthesis, lipidation, and secretion of human apoB:1000-containing particles. These results provide strong evidence in support of the concept that in McA-RH7777 cells, acquisition of PL by apoB:1000 and initiation of apoB-containing lipoprotein assembly, a process distinct from the conventional first-step assembly of HDL-sized apoB-containing particles, do not require MTP. This study indicates that, in hepatocytes, a factor(s) other than MTP mediates the formation of the PL-rich primordial apoB:1000-containing initiation complex.  相似文献   

15.
Post‐translational limitations in the endoplasmic reticulum during recombinant monoclonal antibody production are an important factor in lowering the capacity for synthesis and secretion of correctly folded proteins. Mammalian protein disulfide isomerase (PDI) has previously been shown to have a role in the formation of disulfide bonds in immunoglobulins. Several attempts have been made to improve the rate of recombinant protein production by overexpressing PDI but the results from these studies have been inconclusive. Here we examine the effect of (a) transiently silencing PDI mRNA and (b) increasing the intracellular levels of members of the PDI family (PDI, ERp72, and PDIp) on the mRNA levels, assembly and secretion of an IgG4 isotype. Although transiently silencing PDI in NS0/2N2 cells suggests that PDI is involved in disulfide bond formation of this subclass of antibody, our results show that PDI does not control the overall IgG4 productivity. Furthermore, overexpression of members of the PDI family in a Chinese hamster ovary (CHO) cell line does not improve productivity and hence we conclude that the catalysis of disulfide bond formation is not rate limiting for IgG4 production. Biotechnol. Bioeng. 2010. 105: 770–779. © 2009 Wiley Periodicals, Inc.  相似文献   

16.
Selective inhibition of protein disulfide isomerase by estrogens   总被引:4,自引:0,他引:4  
Protein disulfide isomerase (PDI) is a multifunctional microsomal enzyme that participates in the formation of protein disulfide bonds. PDI catalyzes the reduction of protein disulfide bonds in the presence of excess reduced glutathione and has been implicated in the reductive degradation of insulin; E. coli thioredoxin is homologous to two regions in PDI and can also degrade insulin. PDI activity, measured by 125I-insulin degradation or reactivation of randomly oxidized RNase in the presence of reduced glutathione, is non-competitively inhibited by estrogens; half-maximal inhibition was observed at approximately 100 nM estrogen. Other steroid hormones at 1 microM had little or no effect. PDI segment 120-163 (which corresponds to exon 3 of the PDI gene) and 182-230 have significant similarity with estrogen receptor segments 350-392 and 304-349, respectively, located in the estrogen binding domain but not with the steroid domains of the progesterone and glucocorticoid receptors or with thioredoxin, which is insensitive to estrogens. We propose the hypothesis that enzymes can acquire sensitivity to a hormone via exon shuffling to the enzyme gene from the DNA region coding for the hormone binding domain of the hormone's receptor.  相似文献   

17.
In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding. This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation of an intramolecular disulfide bond between fluorophore-containing and quencher-containing peptide segments results in a redox-dependent fluorescence signal. We find a model compound of this type to be a highly sensitive substrate for PDI both in oxidation and in reduction assays under steady state conditions. These aspects should make substrates of this type generally applicable for assaying PDI and other thiol-disulfide exchange enzymes.  相似文献   

18.
In vitro, protein disulfide isomerase (Pdi1p) introduces disulfides into proteins (oxidase activity) and provides quality control by catalyzing the rearrangement of incorrect disulfides (isomerase activity). Protein disulfide isomerase (PDI) is an essential protein in Saccharomyces cerevisiae, but the contributions of the catalytic activities of PDI to oxidative protein folding in the endoplasmic reticulum (ER) are unclear. Using variants of Pdi1p with impaired oxidase or isomerase activity, we show that isomerase-deficient mutants of PDI support wild-type growth even in a strain in which all of the PDI homologues of the yeast ER have been deleted. Although the oxidase activity of PDI is sufficient for wild-type growth, pulse-chase experiments monitoring the maturation of carboxypeptidase Y reveal that oxidative folding is greatly compromised in mutants that are defective in isomerase activity. Pdi1p and one or more of its ER homologues (Mpd1p, Mpd2p, Eug1p, Eps1p) are required for efficient carboxypeptidase Y maturation. Consistent with its function as a disulfide isomerase in vivo, the active sites of Pdi1p are partially reduced (32 +/- 8%) in vivo. These results suggest that PDI and its ER homologues contribute both oxidase and isomerase activities to the yeast ER. The isomerase activity of PDI can be compromised without affecting growth and viability, implying that yeast proteins that are essential under laboratory conditions may not require efficient disulfide isomerization.  相似文献   

19.
The oxidative refolding of hen lysozyme has been studied by a variety of time-resolved biophysical methods in conjunction with analysis of folding intermediates using reverse-phase HPLC. In order to achieve this, refolding conditions were designed to reduce aggregation during the early stages of the folding reaction. A complex ensemble of relatively unstructured intermediates with on average two disulfide bonds is formed rapidly from the fully reduced protein after initiation of folding. Following structural collapse, the majority of molecules slowly form the four-disulfide-containing fully native protein via rearrangement of a highly native-like, kinetically trapped intermediate, des-[76-94], although a significant population (approximately 30%) appears to fold more quickly via other three-disulfide intermediates. The folding catalyst PDI increases dramatically both yields and rates of lysozyme refolding, largely by facilitating the conversion of des-[76-94] to the native state. This suggests that acceleration of the folding rate may be an important factor in avoiding aggregation in the intracellular environment.  相似文献   

20.
Renaturation of two enzymes lacking disulfide bonds, citrate synthase (CS), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and another protein containing disulfide bonds, lysozyme (LZM), were studied in order to dissect the possible chaperone function from the isomerase function of yeast protein disulfide isomerase (PDI). Our findings suggest no independent chaperone activity of yeast PDI with respect to the two enzymes lacking disulfide bonds, GAPDH and CS, since neither of these enzymes required PDI for renaturation. In contrast, a high level of renaturation of LZM was observed in the presence of PDI. Renaturation of LZM involved formation and rearrangement of disulfide bonds. Additional studies using LZM as a substrate were done to examine the role of cysteine residues in the two active sites of PDI. Studies with a series of cysteine to serine mutants and truncation mutants of yeast PDI revealed that the two active sites of PDI were not equal in activity. An intramolecular disulfide bond in at least one active site of PDI was required for the oxidation of reduced LZM. The first cysteine in each active site was necessary for disulfide bond rearrangement, i.e., isomerization, in LZM, while the second cysteine was not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号