首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The FGF14 protein controls biophysical properties and subcellular distribution of neuronal voltage-gated Na+ (Nav) channels through direct binding to the channel C terminus. To gain insights into the dynamic regulation of this protein/protein interaction complex, we employed the split luciferase complementation assay to screen a small molecule library of kinase inhibitors against the FGF14·Nav1.6 channel complex and identified inhibitors of GSK3 as hits. Through a combination of a luminescence-based counter-screening, co-immunoprecipitation, patch clamp electrophysiology, and quantitative confocal immunofluorescence, we demonstrate that inhibition of GSK3 reduces the assembly of the FGF14·Nav channel complex, modifies FGF14-dependent regulation of Na+ currents, and induces dissociation and subcellular redistribution of the native FGF14·Nav channel complex in hippocampal neurons. These results further emphasize the role of FGF14 as a critical component of the Nav channel macromolecular complex, providing evidence for a novel GSK3-dependent signaling pathway that might control excitability through specific protein/protein interactions.  相似文献   

2.
The voltage-gated sodium (Nav) channel is the molecular determinant of action potential in neurons. Protein-protein interactions (PPI) between the intracellular Nav1.6 C-tail and its regulatory protein fibroblast growth factor 14 (FGF14) provide an ideal and largely untapped opportunity for development of neurochemical probes. Based on a previously identified peptide FLPK, mapped to the FGF14:FGF14 PPI interface, we have designed and synthesized a series of peptidomimetics with the intent of increasing clogP values and improving cell permeability relative to the parental lead peptide. In-cell screening using the split-luciferase complementation (LCA) assay identified ZL0177 (13) as the most potent inhibitor of the FGF14:Nav1.6 channel complex assembly with an apparent IC50 of 11?μM. Whole-cell patch-clamp recordings demonstrated that ZL0177 significantly reduced Nav1.6-mediated transient current density and induced a depolarizing shift of the channel voltage-dependence of activation. Docking studies revealed strong interactions between ZL0177 and Nav1.6, mediated by hydrogen bonds, cation-π interactions and hydrophobic contacts. All together these results suggest that ZL0177 retains some key features of FGF14-dependent modulation of Nav1.6 currents. Overall, ZL0177 provides a chemical scaffold for developing Nav channel modulators as pharmacological probes with therapeutic potential of interest for a broad range of CNS and PNS disorders.  相似文献   

3.
BackgroundProtein interactions between voltage-gated sodium (Nav) channels and accessory proteins play an essential role in neuronal firing and plasticity. However, a surprisingly limited number of kinases have been identified as regulators of these molecular complexes. We hypothesized that numerous as-of-yet unidentified kinases indirectly regulate the Nav channel via modulation of the intracellular fibroblast growth factor 14 (FGF14), an accessory protein with numerous unexplored phosphomotifs and required for channel function in neurons.MethodsHere we present results from an in-cell high-throughput screening (HTS) against the FGF14: Nav1.6 complex using >3000 diverse compounds targeting an extensive range of signaling pathways. Regulation by top kinase targets was then explored using in vitro phosphorylation, biophysics, mass-spectrometry and patch-clamp electrophysiology.ResultsCompounds targeting Janus kinase 2 (JAK2) were over-represented among HTS hits. Phosphomotif scans supported by mass spectrometry revealed FGF14Y158, a site previously shown to mediate both FGF14 homodimerization and interactions with Nav1.6, as a JAK2 phosphorylation site. Following inhibition of JAK2, FGF14 homodimerization increased in a manner directly inverse to FGF14:Nav1.6 complex formation, but not in the presence of the FGF14Y158A mutant. Patch-clamp electrophysiology revealed that through Y158, JAK2 controls FGF14-dependent modulation of Nav1.6 channels. In hippocampal CA1 pyramidal neurons, the JAK2 inhibitor Fedratinib reduced firing by a mechanism that is dependent upon expression of FGF14.ConclusionsThese studies point toward a novel mechanism by which levels of JAK2 in neurons could directly influence firing and plasticity by controlling the FGF14 dimerization equilibrium, and thereby the availability of monomeric species for interaction with Nav1.6.  相似文献   

4.
It is important to identify the true substrates of protein kinases because this illuminates the primary function of any kinase. Here, we used bioinformatics and biochemical validation to identify novel brain substrates of the Ser/Thr kinase glycogen synthase kinase 3 (GSK3). Briefly, sequence databases were searched for proteins containing a conserved GSK3 phosphorylation consensus sequence ((S/T)PXX(S/T)P or (S/T)PXXX(S/T)P), as well as other criteria of interest (e.g. brain proteins). Importantly, candidates were highlighted if they had previously been reported to be phosphorylated at these sites by large-scale phosphoproteomic studies. These criteria identified the brain-enriched cytoskeleton-associated protein β-adducin as a likely substrate of GSK3. To confirm this experimentally, it was cloned and subjected to a combination of cell culture and in vitro kinase assays that demonstrated direct phosphorylation by GSK3 in vitro and in cells. Phosphosites were mapped to three separate regions near the C terminus and confirmed using phosphospecific antibodies. Prior priming phosphorylation by Cdk5 enhanced phosphorylation by GSK3. Expression of wild type, but not non-phosphorylatable (GSK3 insensitive), β-adducin increased axon and dendrite elongation in primary cortical neurons. Therefore, phosphorylation of β-adducin by GSK3 promotes efficient neurite outgrowth in neurons.  相似文献   

5.
Voltage-gated sodium channels (Nav1.1–Nav1.9) are responsible for the initiation and propagation of action potentials in neurons, controlling firing patterns, synaptic transmission and plasticity of the brain circuit. Yet, it is the protein–protein interactions of the macromolecular complex that exert diverse modulatory actions on the channel, dictating its ultimate functional outcome. Despite the fundamental role of Nav channels in the brain, information on its proteome is still lacking. Here we used affinity purification from crude membrane extracts of whole brain followed by quantitative high-resolution mass spectrometry to resolve the identity of Nav1.2 protein interactors. Of the identified putative protein interactors, fibroblast growth factor 12 (FGF12), a member of the nonsecreted intracellular FGF family, exhibited 30-fold enrichment in Nav1.2 purifications compared with other identified proteins. Using confocal microscopy, we visualized native FGF12 in the brain tissue and confirmed that FGF12 forms a complex with Nav1.2 channels at the axonal initial segment, the subcellular specialized domain of neurons required for action potential initiation. Co-immunoprecipitation studies in a heterologous expression system validate Nav1.2 and FGF12 as interactors, whereas patch-clamp electrophysiology reveals that FGF12 acts synergistically with CaMKII, a known kinase regulator of Nav channels, to modulate Nav1.2-encoded currents. In the presence of CaMKII inhibitors we found that FGF12 produces a bidirectional shift in the voltage-dependence of activation (more depolarized) and the steady-state inactivation (more hyperpolarized) of Nav1.2, increasing the channel availability. Although providing the first characterization of the Nav1.2 CNS proteome, we identify FGF12 as a new functionally relevant interactor. Our studies will provide invaluable information to parse out the molecular determinant underlying neuronal excitability and plasticity, and extending the relevance of iFGFs signaling in the normal and diseased brain.Voltage-gated sodium channels (Nav)1 are transmembrane proteins consisting of a pore-forming α subunit (Nav1.1-Nav1.9) and one or more accessory β-subunits (β1–β4) (13). Predominately clustered at the axonal initial segment (AIS), the α subunit alone is necessary and sufficient for channel assembly and the initiation and propagation of action potentials following membrane depolarization (4). Although the α subunit is functional on its own, it is the transient and stable protein–protein interactions that modulate subcellular trafficking, compartmentalization, functional expression, and fine-tune the channel biophysical properties (59). Thus, the Nav channel and the protein constituents that comprise the protein–protein interaction network are all part of a macromolecular complex that modulates the spatiotemporal dynamics of neuronal input and output playing a critical role in synaptic transmission, signal integration, and neuronal plasticity. Perturbations in this protein–protein interaction network can lead to deficits in neuronal excitability, and eventually neurodegeneration and cell death (1015).Given the relevance of these interactions for the native channel activity and its overall role in controlling brain circuits, it is increasingly important to uncover these associations. Antibody-based affinity purification (AP) combined with mass spectrometry (MS) is widely used for the enrichment and analysis of target proteins and constituents of their protein–protein interactions as it can be performed at near physiological conditions and preserves post-translational modifications relevant to protein complex organization (1619). Differential mass spectrometry provides an unbiased method for the efficient, MS-based measurement of relative protein fold changes across multiple complex biological samples. This technology has been successfully applied to a number of ion channels (2026), but—to the best of our knowledge—not to the study of any member of the Nav channel family. Using a target-directed AP approach combined with quantitative MS, we identified proteins constituting the putative interactome of Nav1.2, one of three dominant Nav channel isoforms in the mammalian brain, from native tissue (1, 2, 4, 8). Among these putative interactors, the fibroblast growth factor 12 (FGF12), a member of the intracellular FGF family (5, 13, 14), stood out as one of the most abundant coprecipitating proteins with ∼30-fold enrichment over other interactors. With a combination of confocal microscopy in brain tissue, reconstitution of the interactor in a heterologous systems and electrophysiological assays, we provide validation for FGF12 as a bona fide relevant component of the Nav1.2 proteome and a modulator of Nav1.2-encoded currents. Altogether, the identified channel/protein interaction between FGF12 and Nav1.2 provides new insights for structural and functional interpretation of neuronal excitability, synaptic transmission, and plasticity in the normal and diseased brain.  相似文献   

6.
In mammalian brain, tau, glycogen synthase kinase 3beta (GSK3beta), and 14-3-3, a phosphoserine-binding protein, are parts of a multiprotein tau phosphorylation complex. Within the complex, 14-3-3 simultaneously binds to tau and GSK3beta (Agarwal-Mawal, A., Qureshi, H. Y., Cafferty, P. W., Yuan, Z., Han, D., Lin, R., and Paudel, H. K. (2003) J. Biol. Chem. 278, 12722-12728). The molecular mechanism by which 14-3-3 connects GSK3beta to tau within the complex is not clear. In this study, we find that GSK3beta within the tau phosphorylation complex is phosphorylated on Ser(9). From extracts of rat brain and rat primary cultured neurons, Ser(9)-phosphorylated GSK3beta precipitates with glutathione-agarose beads coated with glutathione S-transferase-14-3-3. Similarly, from rat brain extract, Ser(9)-phosphorylated GSK3beta co-immunoprecipitates with tau. In vitro, 14-3-3 binds to GSK3beta only when the kinase is phosphorylated on Ser(9). In transfected HEK-293 cells, 14-3-3 binds to Ser(9)-phosphorylated GSK3beta and does not bind to GSK3beta (S9A). Tau, on the other hand, binds to both GSK3beta (WT) and GSK3beta (S9A). Moreover, 14-3-3 enhances the binding of tau with Ser(9)-phosphorylated GSK3beta by approximately 3-fold but not with GSK3beta (S9A). Similarly, 14-3-3 stimulates phosphorylation of tau by Ser(9)-phosphorylated GSK3beta but not by GSK3beta (S9A). In transfected HEK-293 cells, Ser(9) phosphorylation suppresses GSK3beta-catalyzed tau phosphorylation in the absence of 14-3-3. In the presence of 14-3-3, however, Ser(9)-phosphorylated GSK3beta remains active and phosphorylates tau. Our data indicate that within the tau phosphorylation complex, 14-3-3 connects Ser(9)-phosphorylated GSK3beta to tau and Ser(9)-phosphorylated GSK3beta phosphorylates tau.  相似文献   

7.
8.
Glioblastoma (GBM) is the most aggressive of primary brain tumors. Despite the progress in understanding the biology of the pathogenesis of glioma made during the past decade, the clinical outcome of patients with GBM remains still poor. Deregulation of many signaling pathways involved in growth, survival, migration and resistance to treatment has been implicated in pathogenesis of GBM. One of these pathways is phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT)/rapamycin-sensitive mTOR-complex (mTOR) pathway, intensively studied and widely described so far. Much less attention has been paid to the role of glycogen synthase kinase 3 β (GSK3β), a target of AKT. In this review we focus on the function of AKT/GSK3β signaling in GBM.  相似文献   

9.
Protein kinase cascades provide the regulatory mechanisms for many of the essential processes in eukaryotic cells. Recent structural and biochemical work has revealed the basis of phosphorylation regulation of three consecutive protein kinases - phosphoinositide-dependent kinase 1 (PDK1), protein kinase B (PKB)/Akt and glycogen synthase kinase 3beta (GSK3beta) - which transduce signals generated by insulin and/or growth factors binding to cell surface receptors. PDK1 and PKB are both AGC family kinases. Whereas PKB is positively regulated via its phosphorylated C-terminal hydrophobic motif, the activity and specificity of PDK1 are determined by equivalent hydrophobic motifs of substrate AGC kinases. In a contrasting mechanism, GSK3beta is negatively regulated by competitive autoinhibition by its phosphorylated N terminus. GSK3beta also functions in the developmental Wnt signalling pathway, but without cross-talk with the PDK1-PKB/Akt pathway. Structural studies of GSK3beta complexes are contributing to our understanding of the phosphorylation-independent mechanism that insulates the Wnt and insulin/growth factor pathways.  相似文献   

10.
Glycogen synthase kinase 3 (GSK3) inhibits signaling pathways that are essential for bone development. To study the requirement for GSK activity during endochondral bone development, we inhibited GSK3 in cultured metatarsal bones with pharmacological antagonists. Interestingly, we find that inhibition of GSK3 strongly repressed chondrocyte and perichondrial osteoblast differentiation. Moreover, chondrocyte proliferation was inhibited, whereas perichondrial cell proliferation was stimulated. These results mirror the effects of fibroblast growth factor signaling (FGF), suggesting the FGF expression is induced. Indeed, we showed that (1) FGF18 expression is stimulated following inhibition of GSK3 and (2) GSK3 regulates FGF18 expression through the control of beta-catenin levels. Stimulation of cultured metatarsal with FGF18 had similar effects on the differentiation and proliferation of chondrocytes and perichondrial cells as GSK3 repression. This suggests that the regulation of FGF18 expression is a major function of GSK3 during endochondral bone development. Consistent with this, we showed that the effect of GSK3 inhibition on chondrocyte proliferation is repressed in tissues lacking a receptor for FGF18, FGF receptor 3.  相似文献   

11.
12.
Synaptic scaffolding molecule (S-SCAM) is a synaptic protein that consists of PDZ domains, a guanylate kinase domain, and WW domains. It interacts with N-methyl-d-aspartate receptor subunits, neuroligin, and beta-catenin. Here, we identified Axin as a novel binding partner of S-SCAM. Axin was co-immunoprecipitated with S-SCAM from rat brain, detected in the post-synaptic density fraction in rat brain subcellular fractionation, and partially co-localized with S-SCAM in neurons. The guanylate kinase domain of S-SCAM directly bound to the GSK3beta-binding region of Axin. S-SCAM formed a complex with beta-catenin and Axin, but competed with GSK3beta for Axin-binding. Thereby, S-SCAM inhibited the Axin-mediated phosphorylation of beta-catenin by GSK3beta.  相似文献   

13.
Glycogen synthase kinase-3β (GSK3β) and casein kinase-1α (CK1α) are multifunctional kinases that play critical roles in the regulation of a number of cellular processes. In spite of their importance, molecular imaging tools for noninvasive and real-time monitoring of their kinase activities have not been devised. Here we report development of the bioluminescent GSK3β and CK1α reporter (BGCR) based on firefly luciferase complementation. Treatment of SW620 cells stably expressing the reporter with inhibitors of GSK3β (SB415286 and LiCl) or CK1α (CKI-7) resulted in dose- and time-dependent increases in BGCR activity that were validated using Western blotting. No increase in bioluminescence was observed in the case of S37A mutant (GSK3β inhibitors) or S45A mutant (CKI-7), demonstrating the specificity of the reporter. Imaging of mice tumor xenograft generated with BGCR-expressing SW620 cells following treatment with LiCl showed unique oscillations in GSK3β activity that were corroborated by phosphorylated GSK3β immunoblotting. Taken together, the BGCR is a novel molecular imaging tool that reveals unique insight into GSK3β and CK1α kinase activities and may provide a powerful tool in experimental therapeutics for rapid optimization of dose and schedule of targeted therapies and for monitoring therapeutic response.  相似文献   

14.
Jin L  Hu X  Feng L 《Journal of neurochemistry》2005,93(5):1251-1261
Neurotrophin 3 (NT3), a member of the neurotrophin family, antagonizes the proliferative effect of fibroblast growth factor 2 (FGF2) on cortical precursors. However, the mechanism by which NT3 inhibits FGF2-induced neural progenitor (NP) cell proliferation is unclear. Here, using an FGF2-dependent rat neurosphere culture system, we found that NT3 inhibits both FGF2-induced neurosphere growth and bromodeoxyuridine (BrdU) incorporation in a dose-dependent manner. U0126, a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, both inhibited FGF2-induced BrdU incorporation, suggesting that the extracellular signal-regulated kinase1/2 (ERK1/2) and PI3K pathways are required for FGF2-induced NP cell proliferation. NT3 significantly inhibited FGF2-induced phosphorylation of Akt and glycogen synthase kinase 3beta (GSK3beta), a downstream kinase of Akt, whereas phosphorylation of ERK1/2 was unaffected. The inhibitory effect of NT3 on FGF2-induced NP cell proliferation was abolished by LY294002, and treatment with SB216763, a specific GSK3 inhibitor, antagonized the NT3 effect, rescuing both neurosphere growth and BrdU incorporation. Moreover, experiments with anti-NT3 antibody revealed that endogenous NT3 also plays a role in inhibiting FGF2-induced NP cell proliferation, and that anti-NT3 antibody enhanced phospho-Akt and phospho-GSK3beta levels in the presence of FGF2. These findings indicate that FGF2-induced NP cell proliferation is inhibited by NT3 via the PI3K/GSK3 pathway.  相似文献   

15.
16.
17.
糖原合成酶激酶 (GSK 3)是一种高度保守的丝氨酸 苏氨酸蛋白激酶 ,在动物中参与诸如糖原合成、胰岛素调节、多种蛋白的转录激活和发育调控等许多生命活动的信号转导。在植物中也分离到了GSK 3 Like基因 ,在拟南芥中的GSKs家族分为四种。GSKs家族在植物中也扮演着重要的角色 ,现有的证据表明 ,植物GSKs可能参与植物的渗透胁迫应答、伤害应答以及油菜素内酯信号转导 ,调节花的发育等等一系列生命活动进程。讨论植物GSKs的发现及其功能研究的最新进展。  相似文献   

18.
19.
Adrenal chromaffin cells (CCs) in rodents express rapidly inactivating, tetrodotoxin (TTX)-sensitive sodium channels. The resulting current has generally been attributed to Nav1.7, although a possible role for Nav1.3 has also been suggested. Nav channels in rat CCs rapidly inactivate via two independent pathways which differ in their time course of recovery. One subpopulation recovers with time constants similar to traditional fast inactivation and the other ∼10-fold slower, but both pathways can act within a single homogenous population of channels. Here, we use Nav1.3 KO mice to probe the properties and molecular components of Nav current in CCs. We find that the absence of Nav1.3 abolishes all Nav current in about half of CCs examined, while a small, fast inactivating Nav current is still observed in the rest. To probe possible molecular components underlying slow recovery from inactivation, we used mice null for fibroblast growth factor homology factor 14 (FGF14). In these cells, the slow component of recovery from fast inactivation is completely absent in most CCs, with no change in the time constant of fast recovery. The use dependence of Nav current reduction during trains of stimuli in WT cells is completely abolished in FGF14 KO mice, directly demonstrating a role for slow recovery from inactivation in determining Nav current availability. Our results indicate that FGF14-mediated inactivation is the major determinant defining use-dependent changes in Nav availability in CCs. These results establish that Nav1.3, like other Nav isoforms, can also partner with FGF subunits, strongly regulating Nav channel function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号