首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chouvenc  Thomas  Su  Nan-Yao 《Insectes Sociaux》2017,64(3):347-355

Recognition of nestmates is an important function in many social insects, as it maintains colony integrity by preventing outsiders from entering the colony. Agonism usually results from the interaction of con-specific non-nestmate individuals in termite colonies. Previous studies hypothesized that the cuticular hydrocarbon (CHC) profile of individuals had a role in nestmate recognition. However, contradictory results from previous studies in some subterranean termites raise questions on the validity of the cuticular hydrocarbon hypothesis. In the current study, Coptotermes gestroi (Wasmann), Coptotermes formosanus Shiraki and their hybrids were reared in identical conditions from colony foundation. This approach eliminates sources of variability in their cuticular hydrocarbon profiles aside from a genetic component. The parental species displayed dissimilar profiles of predominant alkanes and methyl alkanes, but both hybrid types displayed an overlapping, intermediate profile of these CHC. The mixture of the most abundant CHCs alone did not determine kin recognition; while the two hybrid types’ CHC profiles converged, the hybrids still showed strong agonism. One of the hybrid mating types easily merged with C. formosanus, despite only partial genetic similarity and dissimilar cuticular profiles for the common alkanes and methyl alkanes. This study suggests that in Coptotermes termites, the variable abundance of the major alkanes and methyl alkanes commonly found in most Coptotermes species does not explain agonistic patterns, and that other factors such as possibly more complex but less abundant CHC are likely to be involved in colonial recognition.

  相似文献   

2.
Members of social insect colonies employ a large variety of chemical signals during their life. Of these, cuticular hydrocarbons are of primary importance for social insects since they allow for the recognition of conspecifics, nestmates and even members of different castes. The objectives of this study were (1) to characterize the variation of the chemical profiles among workers of the stingless bee Melipona marginata, and (2) to investigate the dependence of the chemical profiles on the age and on the behavior of the studied individuals. The results showed that cuticular hydrocarbon profiles of workers were composed of alkanes, alkenes and alkadienes that varied quantitatively and qualitatively according to function of workers in the colony.  相似文献   

3.
Discriminating among individuals and rejecting non-group members is essential for the evolution and stability of animal societies. Ants are good models for studying recognition mechanisms, because they are typically very efficient in discriminating ‘friends’ (nest-mates) from ‘foes’ (non-nest-mates). Recognition in ants involves multicomponent cues encoded in cuticular hydrocarbon profiles. Here, we tested whether workers of the carpenter ant Camponotus herculeanus use the presence and/or absence of cuticular hydrocarbons to discriminate between nest-mates and non-nest-mates. We supplemented the cuticular profile with synthetic hydrocarbons mixed to liquid food and then assessed behavioural responses using two different bioassays. Our results show that (i) the presence, but not the absence, of an additional hydrocarbon elicited aggression and that (ii) among the three classes of hydrocarbons tested (unbranched, mono-methylated and dimethylated alkanes; for mono-methylated alkanes, we present a new synthetic pathway), only the dimethylated alkane was effective in eliciting aggression. Our results suggest that carpenter ants use a fundamentally different mechanism for nest-mate recognition than previously thought. They do not specifically recognize nest-mates, but rather recognize and reject non-nest-mates bearing odour cues that are novel to their own colony cuticular hydrocarbon profile. This begs for a reappraisal of the mechanisms underlying recognition systems in social insects.  相似文献   

4.
The evolution of sociality is facilitated by the recognition of close kin, but if kin recognition is too accurate, nepotistic behaviour within societies can dissolve social cohesion. In social insects, cuticular hydrocarbons act as nestmate recognition cues and are usually mixed among colony members to create a Gestalt odour. Although earlier studies have established that hydrocarbon profiles are influenced by heritable factors, transfer among nestmates and additional environmental factors, no studies have quantified these relative contributions for separate compounds. Here, we use the ant Formica rufibarbis in a cross‐fostering design to test the degree to which hydrocarbons are heritably synthesized by young workers and transferred by their foster workers. Bioassays show that nestmate recognition has a significant heritable component. Multivariate quantitative analyses based on 38 hydrocarbons reveal that a subset of branched alkanes are heritably synthesized, but that these are also extensively transferred among nestmates. In contrast, especially linear alkanes are less heritable and little transferred; these are therefore unlikely to act as cues that allow within‐colony nepotistic discrimination or as nestmate recognition cues. These results indicate that heritable compounds are suitable for establishing a genetic Gestalt for efficient nestmate recognition, but that recognition cues within colonies are insufficiently distinct to allow nepotistic kin discrimination.  相似文献   

5.
Chemical recognition cues are used to discriminate among species, con‐specifics, and potentially between patrilines in social insect colonies. There is an ongoing debate about the possible persistence of patriline cues despite evidence for the mixing of colony odors via a “gestalt” mechanism in social insects, because patriline recognition could lead to nepotism. We analyzed the variation in recognition cues (cuticular hydrocarbons) with different mating frequencies or queen numbers in 688 Formica exsecta ants from 76 colonies. We found no increase in the profile variance as genetic diversity increased, indicating that patriline effects were absent or possibly obscured by a gestalt mechanism. We then demonstrated that an isolated individual's profile changed considerably relative to their colony profile, before stabilizing after 5 days. We used these isolated individuals to eliminate the masking effects of the gestalt mechanism, and we detected a weak but statistically significant patriline effect in isolated adult workers and also in newly emerged callow workers. Thus, our evidence suggests that genetic variation in the cuticular hydrocarbon profile of F. exsecta ants (n‐alkanes and alkenes) resulted in differences among patrilines, but they were obscured in the colony environment, thereby avoiding costly nepotistic behaviors.  相似文献   

6.
In social insects, cuticular hydrocarbons are involved in species, kin, caste and nestmate recognition. Gas chromatography and mass spectrometry were used to compare the cuticular hydrocarbon composition of workers, males and queens of Melipona bicolor. The cuticular hydrocarbon composition of this species was found to consist mainly of C23, C25:1, C25, C27:1, C27, C29:1 and C29, which are already present in imagoes that have not yet abandoned the brood cell. This composition varied quantitatively and qualitatively between and within the castes and sexes. The newly emerged workers and young queens (virgins) had similar cuticular hydrocarbon profiles, which were different from those of the males. When the females start executing their tasks in the colony, the cuticular hydrocarbon profile differences appear. The workers have less variety, while the queens conserve or increase the number of cuticular hydrocarbon compounds. The queens have more abdominal tegumentary glands than the workers, which apparently are the source of the new cuticular compounds.  相似文献   

7.
Chemical messengers are the primary mode of intracolony communication in the majority of social insect species. Chemically transmitted information plays a major role in nestmate recognition and kin recognition. Physical and behavioral castes often differ in chemical signature, and queen effects can be significant regulators of behavior and reproduction. Chemical messengers themselves differ in molecular structure, and the effects on behavior and other variables can differ as a consequence of not only molecular structure of the chemical messenger itself but also of its temporal expression, quantity, chemical blends with other compounds, and effects of the environment. The most studied, and probably the most widespread, intracolony chemical messengers are cuticular hydrocarbons (CHCs). CHCs are diverse and have been well studied in social insects with regard to both chemical structure and their role as pheromones. CHCs and other chemical messengers can be distributed among colony members via physical contact, grooming, trophallaxis, and contact with the nesting substrate. Widespread intracolony distribution of chemical messengers gives each colony a specific odor whereby colony members are integrated into the social life of the colony and non-members of the colony are excluded. Colony odor can vary as a function of genetic diversity within the colony, and the odor of a colony can change as a function of colony age and environmental effects. Chemical messengers can disseminate information on the presence of reproductives and fertility of the queen(s) and workers, and queen pheromone can play a significant role in suppressing reproduction by other colony members. New analytical tools and new avenues of investigation can continue to expand knowledge of how individual insects function as members of a society and how the society functions as a collective.  相似文献   

8.
The cuticular hydrocarbon (CHC) profiles of insects are well known to be variable. This variation may be due to genetic influences, environmental influences, or both. Most prior studies have focused on social insects, mainly those in the Hymenoptera, and have shown that hydrocarbons play an important role mediating social behaviour, particularly via kin recognition. Here, we assess the CHC profiles of three species of parasitoid wasps in the genus Goniozus (Hymenoptera: Bethylidae), some of which are known to attune their behaviour according to both environmentally based and genetically based recognition of kin. We find that CHC profiles vary according to both the genetic background (wasp species) and the developmental environment (host species) of individual parasitoids. This indicates that kin recognition could be based on CHC profiles in these parasitoids, as it is in social Hymenoptera. Because the CHC profiles of species within the genus Goniozus are dissimilar, we also conclude that chemical analysis could be used as a taxonomic tool alongside morphological and molecular genetic identification for Goniozus and other species.  相似文献   

9.
Ongoing habitat loss and fragmentation result in rapid population size reductions, which can increase the levels of inbreeding. Consequently, many species are threatened by inbreeding depression, a loss of individual fitness following the mating of close relatives. Here, we investigated inbreeding effects on fitness‐related traits throughout the lifetime of the mustard leaf beetle (Phaedon cochleariae) and mechanisms for the avoidance of inbreeding. Previously, we found that these beetles have family‐specific cuticular hydrocarbon profiles, which are likely not used as recognition cue for precopulatory inbreeding avoidance. Thus, we examined whether adult beetles show postcopulatory inbreeding avoidance instead. For this purpose, we determined the larval hatching rate of eggs laid by females mated sequentially with two nonsiblings, two siblings, a nonsibling, and a sibling or vice versa. The beetles suffered from inbreeding depression throughout their entire ontogeny, as evinced by a prolonged larval development, a decreased larval and adult survival and a decreased reproductive output of inbred compared to outbred individuals. The highest larval hatching rates were detected when females were mated with two nonsiblings or first with a sibling and second with a nonsibling. Significantly lower hatching rates were measured in the treatments with a sibling as second male. Thus, the results do not support the existence of postcopulatory inbreeding avoidance in P. cochleariae, but revealed evidence for second male sperm precedence. Consequently, an alternative strategy to avoid inbreeding costs might exist in this beetle, such as a polyandrous mating system, potentially coupled with a specific dispersal behavior.  相似文献   

10.
Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues.  相似文献   

11.
Social insect cuticular hydrocarbon (CHC) mixtures are among the most complex chemical cues known and are important in nest-mate, caste and species recognition. Despite our growing knowledge of the nature of these cues, we have very little insight into how social insects actually perceive and discriminate among these chemicals. In this study, we use the newly developed technique of differential olfactory conditioning to pure, custom-designed synthetic colony odours to analyse signal discrimination in Argentine ants, Linepithema humile. Our results show that tri-methyl alkanes are more easily learned than single-methyl or straight-chain alkanes. In addition, we reveal that Argentine ants can discriminate between hydrocarbons with different branching patterns and the same chain length, but not always between hydrocarbons with the same branching patterns but different chain length. Our data thus show that biochemical characteristics influence those compounds that ants can discriminate between, and which thus potentially play a role in chemical signalling and nest-mate recognition.  相似文献   

12.
Kin recognition, the ability to detect relatives, is important for cooperation, altruism and also inbreeding avoidance. A large body of research on kin recognition mechanisms exists for vertebrates and insects, while little is known for other arthropod taxa. In spiders, nepotism has been reported in social and solitary species. However, there are very few examples of kin discrimination in a mating context, one coming from the orb-weaver Argiope bruennichi. Owing to effective mating plugs and high rates of sexual cannibalism, both sexes of A. bruennichi are limited to a maximum of two copulations. Males surviving their first copulation can either re-mate with the current female (monopolizing paternity) or leave and search for another. Mating experiments have shown that males readily mate with sisters but are more likely to leave after one short copulation as compared with unrelated females, allowing them to search for another mate. Here, we ask whether the observed behaviour is based on chemical cues. We detected family-specific cuticular profiles that qualify as kin recognition cues. Moreover, correlations in the relative amounts of some of the detected substances between sexes within families indicate that kin recognition is likely based on subsets of cuticular substances, rather than entire profiles.  相似文献   

13.
白蚁表皮碳氢化合物研究进展   总被引:2,自引:0,他引:2  
近年来, 固相微萃取等现代技术的使用显著促进了白蚁表皮碳氢化合物研究的开展。至今, 已有约29种白蚁的表皮碳氢化合物组分得到鉴定, 分属于木白蚁科、 鼻白蚁科、 原白蚁科和白蚁科, 其组分主要为正烷烃、 含有不同数量甲基的支链烷烃及少量烯烃。白蚁表皮碳氢化合物不仅具有一定的科、 属特异性, 大多数种类还具备特有组分, 表明其可作为种间识别的指标。表皮碳氢化合物组分在种内个体识别方面的作用, 在低等白蚁中多获得了支持性结果, 但也有研究认为在这些种类中表皮碳氢化合物不是种内个体识别(同巢个体识别)的唯一指标。发现其与品级分化的相关是近年来白蚁表皮碳氢化合物研究的重要进展。有些种类表皮碳氢化合物的年消长与生殖蚁的分化有关; 而另一些种类生殖蚁含有表皮碳氢化合物特有组分, 其含量与生殖蚁的生殖状态有关, 提示其可能在品级分化中发挥重要作用。作为研究白蚁品级分化和维持机理的新方向, 表皮碳氢化合物值得进一步研究探索。  相似文献   

14.
The social organization of termites, unlike that of other social insects, is characterized by a highly plastic caste system. With the exception of the alates, all other individuals in a colony remain at an immature stage of development. Workers in particular remain developmentally flexible; they can switch castes to become soldiers or neotenics. Juvenile hormone (JH) is known to play a key role in turning workers into soldiers. In this study, we analyzed differences in cuticular hydrocarbon (CHC) profiles among castes, paying particular attention to the transition of workers to soldiers, in the subterranean termite species Reticulitermes flavipes. CHCs have a fundamental function in social insects as they serve as cues in inter- and intraspecific recognition. We showed that (1) the CHC profiles of the different castes (workers, soldiers, nymphs and neotenics) are different and (2) when workers were experimentally exposed to a JH analog and thus induced to become soldiers, their CHC profiles were modified before and after the worker-presoldier molt and before and after the presoldier-soldier molt.  相似文献   

15.
One of the most important attributes that allowed the evolution and maintenance of sociality in insects is their ability to distinguish members of their own colonies. The capacity for individual recognition in social insects is mediated by chemical signals that are acquired soon after the adult emerges, and vary according to the tasks performed by individuals in their colonies. We determined the time when adults of the wasp Mischocyttarus consimilis acquire the chemical signature of their colonies, as well as the variation in the cuticular hydrocarbon profiles of the exoskeleton of individuals, according to their functions in the colony. The method used was Fourier transform infrared photoacoustic spectroscopy directly on the gaster of each individual. Young wasps take three to four days to acquire the colony's chemical signature, with a small change on the fifth day, when the cuticular hydrocarbon profile of the workers is more similar to that of the queens than that of the males, probably because they are of the same sex, but primarily because of the similarity of tasks executed by these two groups of females in the colonies.  相似文献   

16.
Social insect colonies contain attractive resources for many organisms. Cleptoparasites sneak into their nests and steal food resources. Social parasites sneak into their social organisations and exploit them for reproduction. Both cleptoparasites and social parasites overcome the ability of social insects to detect intruders, which is mainly based on chemoreception. Here we compared the chemical strategies of social parasites and cleptoparasites that target the same host and analyse the implication of the results for the understanding of nestmate recognition mechanisms. The social parasitic wasp Polistes atrimandibularis (Hymenoptera: Vespidae), and the cleptoparasitic velvet ant Mutilla europaea (Hymenoptera: Mutillidae), both target the colonies of the paper wasp Polistes biglumis (Hymenoptera: Vespidae). There is no chemical mimicry with hosts in the cuticular chemical profiles of velvet ants and pre-invasion social parasites, but both have lower concentrations of recognition cues (chemical insignificance) and lower proportions of branched alkanes than their hosts. Additionally, they both have larger proportions of alkenes than their hosts. In contrast, post-invasion obligate social parasites have proportions of branched hydrocarbons as large as those of their hosts and their overall cuticular profiles resemble those of their hosts. These results suggest that the chemical strategies for evading host detection vary according to the lifestyles of the parasites. Cleptoparasites and pre-invasion social parasites that sneak into host colonies limit host overaggression by having few recognition cues, whereas post-invasion social parasites that sneak into their host social structure facilitate social integration by chemical mimicry with colony members.  相似文献   

17.
1. Being able to detect a predator before any physical contact is crucial for individual survival. Predator presence can be detected thanks to several types of signal, such as chemical cues. Chemical signals are produced by predators for their protection against desiccation, for their communication, or possibly as a side‐effect of their activity. In insects, chemical communication plays a key role in diverse biological processes, including prey‐predator or plant‐insect interactions, courtship behaviour, and kin or species recognition. 2. Cuticular hydrocarbons (CHCs) are specifically involved in recognition processes and social organisation (division of labour, caste ratios) in social insects. Here, the questions raised are whether termites can detect a predator with their cuticular compounds and whether the predator‐produced compounds can influence their prey. 3. The responses of termites Reticulitermes grassei (Clément, 1978) and Reticulitermes flavipes (Kollar, 1837) to the presence of the cuticular compounds produced by a predator, the ant species Lasius niger (Linnaeus, 1758), were investigated. More specifically, the study quantified termite traits such as caste ratios, mortality rates, CHC profile homogeneity and aggressiveness of workers after 2 months' exposure to predator‐produced compounds. 4. The results show that the predator odour did affect the aggressiveness of the native species R. grassei but not of the invasive R. flavipes. The caste ratios and the mortality rates were not affected for both species. 5. Differences between species are discussed around the native or invasive status of each species, along with the role played by chemical cues on behavioural and chemical adaptations.  相似文献   

18.
Bos N  Grinsted L  Holman L 《PloS one》2011,6(4):e19435
Social animals use recognition cues to discriminate between group members and non-members. These recognition cues may be conceptualized as a label, which is compared to a neural representation of acceptable cue combinations termed the template. In ants and other social insects, the label consists of a waxy layer of colony-specific hydrocarbons on the body surface. Genetic and environmental differences between colony members may confound recognition and social cohesion, so many species perform behaviors that homogenize the odor label, such as mouth-to-mouth feeding and allogrooming. Here, we test for another mechanism of cue exchange: indirect transfer of cuticular hydrocarbons via the nest material. Using a combination of chemical analysis and behavioral experiments with Camponotus aethiops ants, we show that nest soil indirectly transfers hydrocarbons between ants and affects recognition behavior. We also found evidence that olfactory cues on the nest soil influence nestmate recognition, but this effect was not observed in all colonies. These results demonstrate that cuticular hydrocarbons deposited on the nest soil are important in creating uniformity in the odor label and may also contribute to the template.  相似文献   

19.
Most ants live in closed societies from which non-members are excluded through fighting or ritualized displays to protect colony resources. Nestmate recognition is the process by which ants discriminate nestmate from non-nestmate ants. Ants use cues coded in mixtures of long-chain hydrocarbon compounds on the cuticle as nestmate recognition cues. Pavement ants (Tetramorium caespitum) form conspicuous wars between neighboring colonies that are organized after workers meet and make the decision to fight after assessing nestmate recognition cues. These wars involve thousands of individuals. Fighting is ritualized and few ants die in the process. We identified 24 cuticular hydrocarbon compounds, above 1% in relative abundance, in the profile of pavement ants with chain lengths ranging from 15 to 31 carbon atoms. Cuticular lipids contained, in order of abundance: mono-methyl alkanes (45–56%), n-alkanes (range: 16–40% relative abundance), and alkenes (10–20%), with small or trace amounts of di-methyl, tri-methyl alkanes and fatty acids. Results from behavioral tests show that pavement ants assess information in cuticular hydrocarbon profiles to recognize both conspecific and heterospecfic (Pogonomyrmex occidentalis and Camponotus modoc) non-nestmate ants and that the relative abundance of methyl-branched alkanes and alkenes codes for nestmate status, at least for conspecific interactions. Our data add to a growing body of knowledge about how ants use cuticular hydrocarbon based nestmate recognition cues to prevent the intrusion of non-nestmates in to colony space.  相似文献   

20.
Research on hybridization between species provides unparalleled insights into the pre‐ and postzygotic isolating mechanisms that drive speciation. In social organisms, colony‐level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping‐by‐sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single‐queen and multiple‐queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号