首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the rapid and sensitive detection of p53 'hot spot' mutations, we combined polymerase chain reaction based single-strand conformational polymorphism (PCR-SSCP) analysis with sequence specific-clamping by peptide nucleic acids (PNAs) in a one-step reaction tube protocol. For this purpose, we designed two PNA molecules comprising aa 246-250 of exon 7 and aa 270-275 of exon 8, respectively, to suppress the amplification of wild-type p53 allelic variants during PCR amplification. Using this method in a survey of 20 brush cytology samples from lung cancer patients, we were able to detect five p53 point mutations occurring in codons 248, 249 and 273 which could not be retrieved by conventional PCR-SSCP. Thus, allelic suppression by PNA molecules opens a way to largely improve the sensitivity of existing PCR-SSCP protocols (approximately 10-50-fold) and could be useful in the detection of 'hot spot' oncogene lesions in histological samples containing only a small number of cancer cells.  相似文献   

2.
The PIK3CA gene, encoding the p110alpha catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110alpha, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three 'hot spot' PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kalpha, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.  相似文献   

3.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders that mainly affect children and are grouped together by similar clinical features and the accumulation of autofluorescent storage material. More than a dozen genes containing nearly 400 mutations underlying human NCLs have been identified. Most of the mutations in these genes are associated with a typical disease phenotype, but some result in variable disease onset, severity and progression. There are still disease subgroups with unknown molecular genetic backgrounds. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.  相似文献   

4.
Regulation of cell cycle progression occurs in part through the targeted degradation of both activating and inhibitory subunits of the cyclin-dependent kinases. During G1, CDC4, encoding a WD-40 repeat protein, and CDC34, encoding a ubiquitin-conjugating enzyme, are involved in the destruction of these regulators. Here we describe evidence indicating that CDC53 also is involved in this process. Mutations in CDC53 cause a phenotype indistinguishable from those of cdc4 and cdc34 mutations, numerous genetic interactions are seen between these genes, and the encoded proteins are found physically associated in vivo. Cdc53p defines a large family of proteins found in yeasts, nematodes, and humans whose molecular functions are uncharacterized. These results suggest a role for this family of proteins in regulating cell cycle proliferation through protein degradation.  相似文献   

5.
In this study, molecular simulations have been combined with site-directed mutagenesis experiments to explore M398(2.43), a LH (lutropin) receptor (LHR) site in helix 2 susceptible to spontaneous activating mutations, and to develop a computational tool for predicting the functionality (i.e. active or nonactive) of LHR mutants.Site-directed mutagenesis experiments engineered 15 different substitutions for M389(2.43), which resulted in variable levels of constitutive activity, inversely correlated with the size of the replacing amino acid. This inverse correlation is suggested to be mediated by I460(3.46), M571(6.37), and Y623(7.53), the tyrosine of the NPxxY motif. In fact, size reduction at position 398(2.43), which is concurrent with constitutive receptor activity, releases the van der Waals interactions found in the wild-type LHR between M398(2.43) and these three amino acids, resulting in structural modifications in the proximity to the E/DRY/W motif. An increment, above a threshold value, in the solvent accessibility of the cytosolic ends of helices 3 and 6 is the main structural feature shared by the active mutants of the LHR. This feature has been successfully used for predicting the functionality of the engineered mutants at M398(2.43), proving that molecular simulations can be useful for in silico screening of LHR mutants.  相似文献   

6.
The molecular cloning of calcium channel subunits has identified an unexpectedly large number of genes and splicing variants, many of whichhave complex expression patterns: a central problem of calcium channel biology is to understand the functional significance of this genetic complexity. The genetic analysis of voltage-dependent calcium channels (VDCCs) provides an approach to defining channel function that is complimentary to pharmacological, electrophysiological, and other molecular methods. By discovering or creating alleles of VDCC genes, one can gain an understanding of the VDCC function at the whole animal level. Of particular interest are mutations in the alpha1 genes that encode the pore forming subunits, as they define the specific channel subtypes. In fact, a variety of calcium channelopathies and targeted mutations have been described for these genes in the last 6 years. The mutant alleles described below illustrate how phenotype analysis of these alleles has uncovered very specific functional roles that can be localized to specific synapses or cells.  相似文献   

7.
Numerous microbes inhabit the human intestine, many of which are uncharacterized or uncultivable. They form a complex microbial community that deeply affects human physiology. To identify the genomic features common to all human gut microbiomes as well as those variable among them, we performed a large-scale comparative metagenomic analysis of fecal samples from 13 healthy individuals of various ages, including unweaned infants. We found that, while the gut microbiota from unweaned infants were simple and showed a high inter-individual variation in taxonomic and gene composition, those from adults and weaned children were more complex but showed a high functional uniformity regardless of age or sex. In searching for the genes over-represented in gut microbiomes, we identified 237 gene families commonly enriched in adult-type and 136 families in infant-type microbiomes, with a small overlap. An analysis of their predicted functions revealed various strategies employed by each type of microbiota to adapt to its intestinal environment, suggesting that these gene sets encode the core functions of adult and infant-type gut microbiota. By analysing the orphan genes, 647 new gene families were identified to be exclusively present in human intestinal microbiomes. In addition, we discovered a conjugative transposon family explosively amplified in human gut microbiomes, which strongly suggests that the intestine is a 'hot spot' for horizontal gene transfer between microbes.  相似文献   

8.
To understand the requirements for binding to G protein betagamma subunits, phage-displayed random peptide libraries were screened using immobilized biotinylated betagamma as the target. Selected peptides were grouped into four different families based on their sequence characteristics. One group (group I) had a clear conserved motif that has significant homology to peptides derived from phospholipase C beta (PLC beta) and to a short motif in phosducin that binds to G protein beta subunits. The other groups had weaker sequence homologies or no homology to the group I sequences. A synthetic peptide from the strongest consensus group blocked activation of PLC by G protein betagamma subunits. The peptide did not block betagamma-mediated inhibition of voltage-gated calcium channels and had little effect on betagamma-mediated inhibition of Gs-stimulated type I adenylate cyclase. Competition experiments indicated that peptides from all four families bound to a single site on betagamma. These peptides may bind to a protein-protein interaction 'hot spot' on the surface of betagamma subunits that is used by a subclass of effectors.  相似文献   

9.
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as ‘BRCAness’. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.  相似文献   

10.
Juvenile hypertension, the role of genetically altered steroid metabolism.   总被引:1,自引:0,他引:1  
The importance of hypertension in the pediatric population is not as well appreciated as in adults. This might be related in part to the lower prevalence of high blood pressure in this age group. As with height and weight, blood pressure increases with age during childhood. The underlying causes of significant hypertension in children differ considerably from those in adults: while the prevalence of hypertension in pediatrics is lower than in adults, clinically identifiable causes of hypertension are common. Abnormalities in steroid biosynthesis have been known for years to cause hypertension in some cases of congenital adrenal hyperplasia. In these patients, hypertension usually accompanies a characteristic phenotype with abnormal sexual differentiation. Recently, the molecular basis of four forms of severe hypertension transmitted on an autosomal basis has been elucidated: (a) the glucocorticoid-remediable aldosteronism (GRA), (b) the syndrome of apparent mineralocorticoid excess (AME), (c) activating mutation of the mineralocorticoid receptor and (d) Liddle's syndrome. All these conditions are characterized primarily by low or low-normal plasma renin, normal or low serum potassium and salt-sensitive hypertension, indicating an increased mineralocorticoid effect. These forms of juvenile hypertension are a consequence of abnormal biosynthesis, metabolism or action of steroid hormones: (a) GRA is due to expression of a chimeric gene produced by fusion of 11beta-hydroxylase aldosterone-synthase genes. Expression of the chimeric enzyme occurs in the zona fasciculata of the adrenal cortex under the control of ACTH and can be suppressed by administration of glucocorticoids. (b) AME is caused by mutations of the 11beta-hydroxysteroid dehydrogenase type 2 enzyme, an enzyme that metabolizes cortisol into its receptor inactive keto-form cortisone, thus protecting the mineralocorticoid receptor (MR) from occupation by glucocorticoids. (c) The activating mutation of the MR results in constitutive MR activity and alters receptor specificity, with progesterone and other steroids lacking 21-hydroxyl groups becoming potent agonists. (d) Liddle's syndrome is due to mutations in the beta or gamma chain of the epithelial sodium channel in distal renal tubule cells. The hyperactivity of this channel caused by the mutations results in increased sodium reabsorption. With the advent of molecular biology in clinical practice it has become evident that some genetic defect may present with a more discrete phenotype, with only moderate hypertension with or without hypokalemia as presenting feature. Considering that hypertension in children and adolescents is often 'nonessential', a search for disorders should be integral part of the diagnostic work-up in young patients with hypertension.  相似文献   

11.
A theoretical method for prediction of the points in the sequence which are relevant for its biological function, the so-called 'hot spots', is presented. This method is based on significant correlation between the spectrum of numerical presentation of any genetic sequence and its biological function. One number corresponds to the particular nucleotide, thus forming a numerical sequence. The 'hot spot' prediction has been tested on the SV40 enhancer as a model system. The SV40 enhancer was chosen because of existing detailed data about activities of systematically obtained mutants. These results have been compared with results obtained theoretically.  相似文献   

12.
During this last decade, the development of prosenescence therapies has become an attractive strategy as cellular senescence acts as a barrier against tumour progression. In this context, CDK4/6 inhibitors induce senescence and reduce tumour growth in breast cancer patients. However, even though cancer cells are arrested after CDK4/6 inhibitor treatment, genes regulating senescence in this context are still unknown limiting their antitumour activity. Here, using a functional genome-wide CRISPR/Cas9 genetic screen we found several genes that participate in the proliferation arrest induced by CDK4/6 inhibitors. We find that downregulation of the coagulation factor IX (F9) using sgRNA and shRNA prevents the cell cycle arrest and senescent-like phenotype induced in MCF7 breast tumour cells upon Palbociclib treatment. These results were confirmed using another breast cancer cell line, T47D, and with an alternative CDK4/6 inhibitor, Abemaciclib, and further tested in a panel of 22 cancer cells. While F9 knockout prevents the induction of senescence, treatment with a recombinant F9 protein was sufficient to induce a cell cycle arrest and senescence-like state in MCF7 tumour cells. Besides, endogenous F9 is upregulated in different human primary cells cultures undergoing senescence. Importantly, bioinformatics analysis of cancer datasets suggest a role for F9 in human tumours. Altogether, these data collectively propose key genes involved in CDK4/6 inhibitor response that will be useful to design new therapeutic strategies in personalised medicine in order to increase their efficiency, stratify patients and avoid drug resistance.Subject terms: Senescence, Tumour biomarkers  相似文献   

13.
Clinical and molecular findings in children with complex I deficiency   总被引:12,自引:0,他引:12  
Isolated complex I deficiency, the most frequent OXPHOS disorder in infants and children, is genetically heterogeneous. Mutations have been found in seven mitochondrial DNA (mtDNA) and eight nuclear DNA encoded subunits, respectively, but in most of the cases the genetic basis of the biochemical defect is unknown. We analyzed the entire mtDNA and 11 nuclear encoded complex I subunits in 23 isolated complex I-deficient children, classified into five clinical groups: Leigh syndrome, progressive leukoencephalopathy, neonatal cardiomyopathy, severe infantile lactic acidosis, and a miscellaneous group of unspecified encephalomyopathies. A genetic definition was reached in eight patients (35%). Mutations in mtDNA were found in six out of eight children with Leigh syndrome, indicating a prevalent association between this phenotype and abnormalities in ND genes. In two patients with leukoencephalopathy, homozygous mutations were detected in two different nuclear-encoded complex I genes, including a novel transition in NDUFS1 subunit. In addition to these, a child affected by mitochondrial encephalomyopathy had heterozygous mutations in NDUFA8 and NDUFS2 genes, while another child with neonatal cardiomyopathy had a complex rearrangement in a single NDUFS7 allele. The latter cases suggest the possibility of unconventional patterns of inheritance in complex I defects.  相似文献   

14.
The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.  相似文献   

15.
Optimisation of a series of indolin-2-one p38α inhibitors was achieved via both blocking of a potential metabolic 'hot spot' and by increasing overall polarity of the lead series leading to non-cytotoxic compounds which showed improved oral bioavailabilities in the rat.  相似文献   

16.
Lysosome-related organelles comprise a group of specialized intracellular compartments that include melanosomes and platelet dense granules (in mammals) and eye pigment granules (in insects). In humans, the biogenesis of these organelles is defective in genetic disorders collectively known as Hermansky-Pudlak syndrome (HPS). Patients with HPS-2, and two murine HPS models, carry mutations in genes encoding subunits of adaptor protein (AP)-3. Other genes mutated in rodent models include those encoding VPS33A and Rab38. Orthologs of all of these genes in Drosophila melanogaster belong to the 'granule group' of eye pigmentation genes. Other genes associated with HPS encode subunits of three complexes of unknown function, named biogenesis of lysosome-related organelles complex (BLOC)-1, -2 and -3, for which the Drosophila counterparts had not been characterized. Here, we report that the gene encoding the Drosophila ortholog of the HPS5 subunit of BLOC-2 is identical to the granule group gene pink (p), which was first studied in 1910 but had not been identified at the molecular level. The phenotype of pink mutants was exacerbated by mutations in AP-3 subunits or in the orthologs of VPS33A and Rab38. These results validate D. melanogaster as a genetic model to study the function of the BLOCs.  相似文献   

17.
The resonant recognition model (RRM) is a model which treats the protein sequence as a discrete signal. It has been shown previously that certain periodicities (frequencies) in this signal characterise protein biological function. The RRM was employed to determine the characteristic frequencies of the hormone prolactin (PRL), and to identify amino acids ('hot spots') mostly contributing to these frequencies and thus proposed to mostly contribute to the biological function. The predicted 'hot spot' amino acids, Phe-19, Ser-26, Ser-33, Phe-37, Phe-40, Gly-47, Gly-49, Phe-50, Ser-61, Gly-129, Arg-176, Arg-177, Cys-191 and Arg-192 are found in the highly conserved amino-terminal and C-terminus regions of PRL. Our predictions agree with previous experimentally tested residues by site-direct mutagenesis and photoaffinity labelling.  相似文献   

18.
19.
Many naturally occurring and engineered mutations lead to constitutive activation of the G protein-coupled lutropin receptor (LHR), some of which also result in reduced ligand responsiveness. To elucidate the nature of interhelical interactions in this heptahelical receptor and changes thereof accompanying activation, we have utilized site-directed mutagenesis on transmembrane helices 6 and 7 of rat LHR to prepare and characterize a number of single, double, and triple mutants. The potent constitutively activating mutants, D556(6.44)H and D556(6.44)Q, were combined with weaker activating mutants, N593(7.45)R and N597(7.49)Q, and the loss-of-responsiveness mutant, N593(7.45)A. The engineered mutants have also been simulated using a new receptor model based on the crystal structure of rhodopsin. The results suggest that constitutive LHR activation by mutations at Asp-556(6.44) is triggered by the breakage or weakening of the interaction found in the wild type receptor between Asp-556(6.44) and Asn-593(7.45). Whereas this perturbation is unique to the activating mutations at Asp-556(6.44), common features to all of the most active LHR mutants are the breakage of the charge-reinforced H-bonding interaction between Arg-442(3.50) and Asp-542(6.30) and the increase in solvent accessibility of the cytosolic extensions of helices 3 and 6, which probably participate in the receptor-G protein interface. Asn-593(7.45) and Asn-597(7.49) also seem to be necessary for the high constitutive activities of D556(6.44)H and D556(6.44)Q and for full ligand responsiveness. The new theoretical model provides a foundation for further experimental work on the molecular mechanism(s) of receptor activation.  相似文献   

20.
Cyclin-dependent kinase (CDK)4 is a master integrator that couples mitogenic and antimitogenic extracellular signals with the cell cycle. It is also crucial for many oncogenic transformation processes. In this overview, we address various molecular features of CDK4 activation that are critical but remain poorly known or debated, including the regulation of its association with D-type cyclins, its subcellular location, its activating Thr172-phosphorylation and the roles of Cip/Kip CDK "inhibitors" in these processes. We have recently identified the T-loop phosphorylation of CDK4, but not of CDK6, as a determining target for cell cycle control by extracellular factors, indicating that CDK4-activating kinase(s) might have to be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号