首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Principal component analysis of gene frequencies of Chinese populations   总被引:6,自引:0,他引:6  
Principal components (PCs) were calculated based on gene frequencies of 130 alleles at 38 loci in Chinese populations, and geographic PC maps were constructed. The first PC map of the Han shows the genetic difference between Southern and Northern Mongoloids, while the second PC indicates the gene flow between Caucasoid and Mongoloids. The first PC map of the Chinese ethnic minorities is similar to that of the second PC map of the Han, while their second PC map is similar to the first PC map of the Han. When calculating PC with the gene frequency data from both the Han and ethnic minorities, the first and second PC maps most resemble those of the ethnic minorities alone. The third and fourth PC maps of Chinese populations may reflect historical events that allowed the expansion of the populations in the highly civilized regions. A clear-cut boundary between Southern and Northern Mongoloids in the synthetic map of the Chinese populations was observed in the zone of the Yangtze River. We suggest that the a  相似文献   

2.
Genetic distances were calculated for Han subpopulations in different provinces, cities and au-tonomous regions and ethnic minorities in China by using gene frequency data of 38 loci, and genetic trees were con-structed. The results showed that, among both Han and ethnic minorities, there were two types, i.e. southern and northern Mongoloids, with Yangtze River as boundary. Therefore, both African origin theory and local origin theory about the modern man should answer the question; when did these two types separate and how did they develop. This paper also conclusively proved genetically that the Han subpopulations in different regions are genetically close to the lo-cal ethnic minorities, which indicates that much blood of ethnic minorities has mixed into Han, at the same time, some blood of Han also has mixed into the local ethnic minorities.  相似文献   

3.
土家族源流的遗传学初探   总被引:2,自引:0,他引:2  
谢选华  李辉  毛显赟  文波  高嵩  金建中  卢大儒  金力 《遗传学报》2004,31(10):1023-1029
通过分析湖北恩施、湖南吉首地区土家族两个人群样本,利用14个Y染色体非重组区(NRY)单倍群分型技术对土家族的遗传结构进行了研究。分型结果结合其他地区土家族两个人群和相关民族群体进行主成分分析,并将分析结果根据不同人群的地理分布展示在地图上。然后对各主成分和单倍群进行偏相关分析来探讨它们之间的相关性。结果显示土家族主体与汉族在父系结构上比较接近,但依然有一定的区别。同时还发现龙山地区唯一保留土家语的土家族与氐羌族群有很明显的相关性,这说明土家族最早的起源可能正是氐羌民族。实验结果表明,恩施和吉首地区的大部分土家族与周边民族群体间的血缘交流频繁;而龙山和永顺的土家族更能代表土家先民的遗传结构,他们与西部氐羌族群密切相关。  相似文献   

4.
调查了我国24个民族、74个群体的免疫球蛋白同种异型Gm、Km分布。测定了9560例个体的Gm(1,2,3,5,21)因子和9611例个体的Km(1)因子。根据Gm单体型频率计算了遗传距离并绘制了系统树。结果支持作者早前提出的有关中华民族起源于古代两个不同群体的假说。这两个群体大致以北纬30度为界,分别居栖在黄河和长江流域。本文数据和其他主要人种的Gm分布资料相比较,作者认为在人类进化中,尼格鲁人种首先和高加索-蒙古人种分离;然后高加索人种和蒙古人种分离。不同人种间的差异,大于同一人种内不同群体间的差异。蒙古人种明显地被分为南、北两大类型,分别以具有高频率的Gm~(1;21)和Gm~(1,3;5)单体型作为种族的标记。与高加索人种关联的Gm~(3;5)单体型存在于中国西北地区的少数民族中,提示混有高加索人种血缘。很可能来源于中亚地区的高加索人,通过“丝绸之路”进入中国。Km因子在所调查的74个群体中呈随机分布。  相似文献   

5.
Data from population and family studies show that the human immunoglobulin Gm allotypes prove to be unique genetic markers in studies of human genetics, particularly in the characterization of different race or population determined by the differences in Gm hapolotype composition and its frequency. In this paper, a total of 5,641 individuals from 40 populations were typed for Gma, f, x, b, and g factors. The genetic distances between 13 minorities (Zhuang, Uygur, Dong, Hui, Korean, Kazak, Bai, Tibetan, Mongolian, and Oroqen) and 27 Han populations were computed by Nei's method on the basis of Gm haplotype frequencies and a phylogenetic tree was constructed. The conclusions were (1) The common Gm haplotype are afb, axg, a, and ag. The Gmfb haplotype is observed only in Uygur, Hui, and Kazak. (2) There is a parallel relationship between genetic distance and geographic distance for these populations. (3) The Gmafb haplotype frequency increases sharply from north to south, and there is a concomitant sharp decrease in ag and axg frequencies. (4) A hypothesis was proposed by the author that the origin of the Chinese nation might exist in both the Yellow River and the Yangtze River region and the most likely boundary between the Southern and the Northern Chinese is near the thirty degrees north latitude.  相似文献   

6.
免疫球蛋白同种异型Gm因子在四十个中国人群中的分布   总被引:18,自引:5,他引:13  
根据免疫球蛋白同种异型Gm因子在维吾尔族、哈萨克族、回族、蒙古族、朝鲜族、藏族、鄂伦春族、壮族、侗族、白族、汉族等40个人群中的分布,计算Gm单倍型频率及遗传距离,提出了“中华民族以北纬30度为界,分南北两大发源地”的假说。  相似文献   

7.
There are two purposes in displaying spatial genetic structure. One is that a visual representation of the variation of the genetic variable should be provided in the contour map. The other is that spatial genetic structure should be reflected by the patterns or the gradients with genetic boundaries in the map. Nevertheless, most conventional interpolation methods, such as Cavalli-Sforza's method in genography, inverse distance-weighted methods, and the Kriging technique, focus only on the first primary purpose because of their arbitrary thresholds marked on the maps. In this paper we present an application of the contour area multifractal model (CAMM) to human population genetics. The method enables the analysis of the geographic distribution of a genetic marker and provides an insight into the spatial and geometric properties of obtained patterns. Furthermore, the CAMM may overcome some of the limitations of other interpolation techniques because no arbitrary thresholds are necessary in the computation of genetic boundaries. The CAMM is built by establishing power law relationships between the area A (> or =rho) in the contour map and the value p itself after plotting these values on a log-log graph. A series of straight-line segments can be fitted to the points on the log-log graph, each representing a power law relationship between the area A (> or =rho) and the cutoff genetic variable value for rho in a particular range. These straight-line segments can yield a group of cutoff values, which can be identified as the genetic boundaries that can classify the map of genetic variable into discrete genetic zones. These genetic zones usually correspond to spatial genetic structure on the landscape. To provide a better understanding of the interest in the CAMM approach, we analyze the spatial genetic structures of three loci (ABO, HLA-A, and TPOX) in China using the CAMM. Each synthetic principal component (SPC) contour map of the three loci is created by using both Han and minority groups data together. These contour maps all present an obvious geographic diversity, which gradually increases from north to south, and show that the genetic differences among populations in different districts of the same nationality are greater than those among different nationalities of the same district. It is surprising to find that both the value of p and the fractal dimension alpha have a clear north to south gradient for each locus, and the same clear boundary between southern and northern Asians in each contour map is still seen in the zone of the Yangtze River, although substantial population migrations have occurred because of war or famine in the last 2,000 or 3,000 years. A clear genetic boundary between Europeans and Asians in each contour map is still seen in northwestern China with a small value of alpha, although the genetic gradient caused by gene flow between Europeans and Asians has tended to show expansion from northwestern China. From the three contour maps another interesting result can be found: The values of alpha north of the Yangtze River are generally less than those south of the Yangtze River. This indicates that the genetic differences among the populations north of the Yangtze River are generally smaller than those in populations south of the Yangtze River.  相似文献   

8.
Basing on the frequencies of 28 alleles of 12 polymorphic loci of blood groups, serum proteins and red cell enzymes the matrix of genetic distances between 11 populations of Europe, Asia and America was calculated. This matrix and the dendrogram based on it permitted to suggest that the region of South Siberia and the neighbouring regions of Central Asia was the place, where the paleolithic populations were divided into the ancestors of the Northern Mongoloids, Caucasoids and American Indians. The published data concerning the human mtDNA polymorphisms support the hypothesis of the author.  相似文献   

9.
The Han Chinese are the world's largest ethnic group residing across China. Shaanxi province in northern China was a pastoral–agricultural interlacing region sensitive to climate change since Neolithic times, which makes it a vital place for studying population dynamics. However, genetic studies of Shaanxi Han are underrepresented due to the lack of high-density sampling and genome-wide data. Here, we genotyped 700 000 single nucleotide polymorphisms (SNPs) in 200 Han individuals from nine populations in Shaanxi and compared with available modern and ancient Eurasian individuals. We revealed a north–south genetic cline in Han Chinese with Shaanxi Han locating at the northern side of the cline. We detected the western Eurasian-related admixture in Shaanxi populations, especially in Guanzhong and Shanbei Han Chinese in proportions of 2%–4.6%. Shaanxi Han were suggested to derive a large part of ancestry (39%–69%) from a lineage that also contributed largely to ancient and present-day Tibetans (85%) as well as southern Han, supporting the common northern China origin of modern Sino-Tibetan-speaking populations and southwestward expansion of millet farmers from the middle-upper Yellow River Basin to the Tibetan Plateau and to southern China. The rest of the ancestry of Shaanxi Han was from a lineage closely related to ancient and present-day Austronesian and Tai-Kadai speaking populations in southern China and Southeast Asia. We also observed a genetic substructure in Shaanxi Han in terms of north–south-related ancestry corresponding well to the latitudes. Maternal mitochondrial DNA and paternal Y-chromosome lineages further demonstrated the aforementioned admixture pattern of Han Chinese in Shaanxi province.  相似文献   

10.
The population history of Southeast (SE) China remains poorly understood due to the sparse sampling of present-day populations and limited modeling with ancient genomic data. We report genome-wide genotyping data from 207 present-day Han Chinese and Hmong-Mien (HM)-speaking She people from Fujian and Taiwan Island, SE China. We coanalyzed 66 Early Neolithic to Iron Age ancient Fujian and Taiwan Island individuals obtained from previously published works to explore the genetic continuity and admixture based on patterns of genetic variations of the high-resolution time transect. We found the genetic differentiation between northern and southern East Asians was defined by a north–south East Asian genetic cline and our studied southern East Asians were clustered in the southern end of this cline. The southeastern coastal modern East Asians are genetically similar to other southern indigenous groups as well as geographically close to Neolithic-to-Iron Age populations, but they also shared excess alleles with post-Neolithic Yellow River ancients, which suggested a southward gene flow on the modern southern coastal gene pool. In addition, we identified one new HM genetic cline in East Asia with the coastal Fujian HM-speaking She localizing at the intersection between HM and Han clines. She people show stronger genetic affinity with southern East Asian indigenous populations, with the main ancestry deriving from groups related to southeastern ancient indigenous rice farmers. The southeastern Han Chinese could be modeled with the primary ancestry deriving from the group related to the Yellow River Basin millet farmers and the remaining from groups related to rice farmers, which was consistent with the northern China origin of modern southeastern Han Chinese and in line with the historically and archaeologically attested southward migrations of Han people and their ancestors. Our estimated north–south admixture time ranges based on the decay of the linkage disequilibrium spanned from the Bronze Age to historic periods, suggesting the recent large-scale population migrations and subsequent admixture participated in the formation of modern Han in SE Asia.  相似文献   

11.
Lou H  Li S  Yang Y  Kang L  Zhang X  Jin W  Wu B  Jin L  Xu S 《PloS one》2011,6(11):e27341
It has been shown that the human genome contains extensive copy number variations (CNVs). Investigating the medical and evolutionary impacts of CNVs requires the knowledge of locations, sizes and frequency distribution of them within and between populations. However, CNV study of Chinese minorities, which harbor the majority of genetic diversity of Chinese populations, has been underrepresented considering the same efforts in other populations. Here we constructed, to our knowledge, a first CNV map in seven Chinese populations representing the major linguistic groups in China with 1,440 CNV regions identified using Affymetrix SNP 6.0 Array. Considerable differences in distributions of CNV regions between populations and substantial population structures were observed. We showed that ~35% of CNV regions identified in minority ethnic groups are not shared by Han Chinese population, indicating that the contribution of the minorities to genetic architecture of Chinese population could not be ignored. We further identified highly differentiated CNV regions between populations. For example, a common deletion in Dong and Zhuang (44.4% and 50%), which overlaps two keratin-associated protein genes contributing to the structure of hair fibers, was not observed in Han Chinese. Interestingly, the most differentiated CNV deletion between HapMap CEU and YRI containing CCL3L1 gene reported in previous studies was also the highest differentiated regions between Tibetan and other populations. Besides, by jointly analyzing CNVs and SNPs, we found a CNV region containing gene CTDSPL were in almost perfect linkage disequilibrium between flanking SNPs in Tibetan while not in other populations except HapMap CHD. Furthermore, we found the SNP taggability of CNVs in Chinese populations was much lower than that in European populations. Our results suggest the necessity of a full characterization of CNVs in Chinese populations, and the CNV map we constructed serves as a useful resource in further evolutionary and medical studies.  相似文献   

12.
The polyomavirus JC (JCV) is a double-stranded DNA virus that is ubiquitous in human populations and is excreted in urine by a large percentage of individuals (20–70%). The strong genetic stability, combined with a mechanism of transmission mainly within the family, makes JCV a good marker of human migrations. In this study, the coevolution of JCV with its human host is investigated by using over a thousand nucleotide sequences deposited in the EMBL database; they correspond to the IG region, which is the genomic region with the highest rate of variation. The pattern of genetic diversity in JCV is evaluated by the principal coordinates analysis and the construction of synthetic maps. The first principal coordinate supports the existence of two distinct virus lineages, both arising from the ancestral African type. The first synthetic map suggests a two-migration model of the human dispersal out of Africa, thus implying a more complex picture than that known from human genes. The second principal coordinate points out the distinctiveness of strains coming from Asian/Amerind populations. The picture yielded by the second synthetic map appears to be more consistent with that known from human genes. In fact, it provides evidence of a deep split of the Asian lineage of JCV into two main branches: one diffusing in Japan and Americas, the other in Southeast Asia. The view that JCV, with its peculiar feature of a dual early emergence from Africa, can provide new information about the evolutionary history of our ancestors is discussed.  相似文献   

13.
We investigated the distribution of Y-chromosome haplotype using 19 Y-SNPs in Han Chinese populations from 22 provinces of China. Our data indicate distinctive patterns of Y chromosome between southern and northern Han Chinese populations. The southern populations are much more polymorphic than northern populations. The latter has only a subset of the southern haplotypes. This result confirms the genetic difference observed between southern and northern ethnic populations in East Asia. It supports the hypothesis that the first settlement of modern humans of African origin occurred in the southern part of East Asia during the last Ice Age, and a northward migration led to the peopling of northern China.  相似文献   

14.
We investigated the distribution of Y-chromosome haplotype using 19 Y-SNPs in Han Chinese populations from 22 provinces of China. Our data indicate distinctive patterns of Y chromosome between southern and northern Han Chinese populations. The southern populations are much more polymorphic than northern populations. The latter has only a subset of the southern haplotypes. This result confirms the genetic difference observed between southern and northern ethnic populations in East Asia. It supports the hypothesis that the first settlement of modern humans of African origin occurred in the southern part of East Asia during the last Ice Age, and a northward migration led to the peopling of northern China.  相似文献   

15.
Mitochondrial DNA (mtDNA) polymorphism has been studied systematically in the Han, Tibeto-Buman, and Hmong-Mien ethnic families of southern East Asia. Only two families in this region, Daic and Austro-Asiatic, were still uninvestigated. Daic is a major ethnic family in South China and Southeast Asia and has a long history. To study mtDNA polymorphism within this family, all the Daic populations of China and some of Vietnam (774 individuals from 30 populations) were typed by HVS-1 region sequencing and by PCR-RFLP assays. The observed high Southern type frequencies (B, F, M7, R) confirmed Daic as a typical Southern group. mtDNAs of other populations (126 individuals from 14 populations) from Austro-Asiatic ethnic families neighboring the Daic were also typed. Networks of mtDNA haplogroups in South China were traced from these new data and those from the literature. Ethnic families share many haplogroups, indicating their common origin. However, the two largest families in South China, Daic, and Hmong-Mien, polarized into several ethnic family specific haplogroups. Haplogroup ages were estimated in the networks of high-frequency haplogroups (B, F, M7, R), and they were found to originate about 50,000 years ago. In contrast, ethnic family specific haplogroups all originated around 20,000 years ago. We therefore conclude that modern humans have lived in South China for a long time, inside-ethnogenesis was a rather late event, and frequent inmixing was taking place throughout. MtDNA data of Daic, Austro-Asiatic and other populations in South China has therefore proven pivotal for studying the human history of East Asia.  相似文献   

16.
The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.  相似文献   

17.
We have analyzed 105 autosomal polymorphic short tandem repeat (STR) loci for nine East and South-eastern Asian populations (two Japanese, five Han Chinese, Thai, and Burmese populations) and a Caucasian population using a multiplex PCR typing system. All the STR loci are genomewide tetranucleotide repeat markers of which the total number of observed alleles and the observed heterozygosity were 756 and 0.743, respectively, for Japanese populations. Phylogenetic analysis for these allele frequency data suggested that the Japanese populations are more closely related with southern Chinese populations than central and/or northern ones. STRUCTURE program analysis revealed the almost clearly divided and accountable population structure at K=2–6, that the two Japanese populations always formed one group separated from the other populations and never belong to different groups at K≥3. Furthermore, our new allele frequency data for 91 loci were analyzed with those for 52 worldwide populations published by previous studies. Phylogenetic and multidimensional scaling (MDS) analyses indicated that Asian populations with large population size (six Han Chinese, three Japanese, two Southeast Asia) formed one distinct cluster and are closer to each other than other ethnic minorities in east and Southeast Asia. This pattern may be the caviar of comparing populations with greatly differing population sizes when STR loci were analyzed.  相似文献   

18.
翁自力  袁义达 《遗传学报》1990,17(4):260-268
根据中国13个人口逾百万的民族及台湾高山族的红细胞血型座位的基因频率,分析了各血型系统的分化程度。结果表明,中国人群在MNSs系统上的分化十分显著。对各民族间的亲缘关系分析表明,汉族、朝鲜族、蒙古族、回族,满族和藏族等北方民族首先聚集在一起,侗族、高山族、壮族和彝族等聚集在一起,然后白族与南北两大人集聚集在一起,最后才是维吾尔族与其它人群相聚。本文以华北汉族作为蒙古人种的代表,探讨了世界上三大人种间的遗传关系,结果表明,黄种人与黑种人之间的遗传差异最小,而黑种人与白种人之间的遗传差异最大。根据基因分化系数(G_(ST))和Shannon信息测度(H),中国民族间的遗传差异均仅占中国人总遗传变异量的2%左右,这说明,绝大部分遗传变异存在于各民族之内。  相似文献   

19.
客家人起源的遗传学分析   总被引:13,自引:1,他引:13  
客家人是南方讲客家话的特殊汉族民系,其来源学术界有一定争议。该研究对福建长汀的148个客家男子做了遗传分析。从父系遗传的Y染色体SNP的主成分分析看,客家人与中原汉族最近,又偏向于苗瑶语族群中的畲族,不同于其他南方汉族偏向于侗台语族群。混合分析发现客家人数据结构中汉族结构占80.2%,类畲族结构13%,类侗族结构6.8%。各族M7个体Y-STR单倍型的网络结构分析发现客家人中类苗瑶结构有两个来源,其一来自湖北,其一来自广东。客家人之类侗族结构应来自江西土著干越。客家人母系遗传的线粒体Region V区段9bp缺失频率为19.7%,与畲族很近,不同于中原汉族。客家人的主要成分应是中原汉人,畲族是对客家人影响最大的外来因素。与客家话中的苗瑶语特征相印证,客家人可能是古代荆蛮族的核心成分不断加上中原汉人移民形成的。客家话等南方汉语方言最初也可能是南方原住民语言在中原汉语不断影响下逐渐形成的。  相似文献   

20.
Summary Since the discovery in 1966 of the Gm ab3st gene, which characterizes Mongoloid populations, the distribution of allotypes of immunoglobulins (Gm) among Mongoloid populations scattered from Southeast Asia through East Asia to South America has been investigated, and the following conclusions can be drawn: 1. Mongoloid populations can be characterized by four Gm haplotypes, Gm ag, axg, ab3st, and afb1b3, and can be divided into two groups based on the analysis of genetic distances utilizing Gm haplotype frequency distributions: the first is a southern group characterized by a remarkably high frequency of Gm afb1b3 and a low frequency of Gm ag, and the second, a northern group characterized by a high frequency of both Gm ag and Gm ab3st but an extremely low frequency of Gm afb1b3. 2. Populations in China, mainly Han but including minority nationalities, show remarkable heterogeneity of Gm allotypes from north to south and contrast sharply to Korean and Japanese populations, which are considerably more homogenous with respect to these genetic markers. The center of dispersion of the Gm afb1b3 gene characterizing southern Mongoloids has been identified as the Guangxi and Yunnan area in the southwest of China. 3. The Gm ab3st gene, which is found with its the highest incidence among the northern Baikal Buriats, flows in all directions. However, this gene shows a precipitous drop from mainland China to Taiwan and Southeast Asia and from North to South America, although it is still found in high frequency among Eskimos, Koryaks, Yakuts, Tibetans, Olunchuns, Tungus, Koreans, Japanese, and Ainus. On the other hand, the gene was introduced into Huis, Uyghurs, Indians, Iranians, and spread as far as to include Hungarians and Sardinians in Italy. On the basis of these results, it is concluded that the Japanese race belongs to northern Mongoloids and that the origin of the Japanese race was in Siberia, and most likely in the Baikal area of the Soviet Union.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号