首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the crystal structure of allophycocyanin from cyanobacterium Spirulina platensis (APC-SP) as a search model, the crystal structure of allophycocyanin from red algae Porphyra yezoensis (APC-PY) has been studied by molecular replacement methods. The APC-PY crystals (Form 3) belong to the space group of R32, cell dimensions a = b = 10.53 nm, c = 18.94 nm, α =β = 90°, γ= 120°; there is one αβ monomer in each crystallographic asymmetric unit in the cell. The translation function search gave a unique peak with a correlation coefficient (Cc) of 67.0% and an R-factor of 36.1 % for reflection data from 1.0 to 0.4 nm. Using the results by molecular replacement, the initial model of APC-PY was built, and the coincidence of the chromophore in APC-PY initial model with its 2Fo-FC OMIT map further confirms the results by molecular replacement.  相似文献   

2.
The crystal structure of allophycocyanin from red algae Porphyra yezoensis (APC-PY) at 2.2-A resolution has been determined by the molecular replacement method. The crystal belongs to space group R32 with cell parameters a = b = 105.3 A, c = 189.4 A, alpha = beta = 90 degrees, gamma = 120 degrees. After several cycles of refinement using program X-PLOR and model building based on the electron density map, the crystallographic R-factor converged to 19.3% (R-free factor is 26.9%) in the range of 10.0 to 2.2 A. The r.m.s. deviations of bond length and angles are 0.015 A and 2.9 degrees, respectively. In the crystal, two APC-PY trimers associate face to face into a hexamer. The assembly of two trimers within the hexamer is similar to that of C-phycocyanin (C-PC) and R-phycoerythrin (R-PE) hexamers, but the assembly tightness of the two trimers to the hexamer is not so high as that in C-PC and R-PE hexamers. The chromophore-protein interactions and possible pathway of energy transfer were discussed. Phycocyanobilin 1alpha84 of APC-PY forms 5 hydrogen bonds with 3 residues in subunit 2beta of another monomer. In R-PE and C-PC, chromophore 1alpha84 only forms 1 hydrogen bond with 2beta77 residue in subunit 2beta. This result may support and explain great spectrum difference exists between APC trimer and monomer.  相似文献   

3.
A novel fraction of c-phycocyanin from the thermophilic cyanobacterium Thermosynechcoccus vulcanus, with an absorption maxima blue-shifted to 612 nm (PC612), has been purified from allophycocyanin and crystallized. The crystals belong to the P63 space group with cell dimensions of 153 A x 153 A x 59 A with a single (alphabeta) monomer in the asymmetric unit, resulting in a solvent content of 65%, and diffract to 2.7 A. The PC612 crystal structure has been determined by molecular replacement and refined to a crystallographic R-factor of 20.9% (Rfree = 27.8%). The crystal packing in this form shows that the PC612 form of phycocyanin does not associate into hexamers and that its association with adjacent trimers in the unit cell is very different from that found in a previously determined structure of the normal form of T. vulcanus phycocyanin, which absorbs at 620 nm. Analysis of the PC612 structure shows that the alpha subunits, which typically form the interface between two trimers within a hexamer, have a high degree of flexibility, as indicated by elevated B-factors in portions of helices B, E, and G. Examination of calculated electron density omit maps shows that unlike all other structures of phycobiliproteins determined so far, the Asnbeta72 residue is not methylated, explaining the blue-shift in its absorption spectra. On the basis of the results presented here, we suggest that this new form of trimeric phycocyanin may constitute a special minor component of the phycobilisome and may form the contact between the phycocyanin rods and the allophycocyanin core.  相似文献   

4.
The crystal structure of R-phycocyanin from Polysiphonia urceolata (R-PC-PU) at 2.4 A is reported. The R-PC-PU crystal belongs to space group P4(3)2(1)2 with cell parameters a = 135.1 A, c = 210.0 A, and alpha = beta = gamma = 90 degrees. The structure was determined by molecular replacement. The crystallographic R-factor of the refined model is 0.189 (R(free) = 0.239). Comparison of the microenvironment of chromophore beta 155 in R-PC-PU and in C-PC from Fremyolla diphosiphon (C-PC-FD) reveals that their spectral differences may be caused by their different alpha 28 residues. In the R-PC-PU crystal structure, two (alpha beta)(3) trimers assemble face to face to form a hexamer, and two such hexamers assemble in two novel side-to-side arrangements. Possible models for the energy transfer from phycoerythrin to phycocyanin and from phycocyanin to allophycocyanin are proposed based on several phycobiliprotein crystal structures.  相似文献   

5.
Using the crystal structure of Despentapeptide (B26-B30) insulin (DPI) as the search model, the crystal structure of DesBl-B2 Despentapeptide (B26-B30) insulin (DesBl-2 DPI) has been studied by the molecular replacement method. There is one DesBl-2 DPI molecule in each crystallographic asymmetric unit. The cross rotation function search and the translation function search show apparent peaks and thus determine the orientation and position of DesBl-2 DPI molecule in the cell respectively. The subsequent three-dimensional structural rebuilding and refine-ment of DesBl-2 DPI molecule confirm the results by molecular replacement method.  相似文献   

6.
Using the crystal structure of Despentapeptide (B26-B30) insulin (DPI as the search model, the crystal structure of DesB1-B2 Despentapeptide (B26-B30) insulin (DesB1-2 DPI) has been studied by the molecular replacement method. There is one DesB1-2 DPI molecule in each crystallographic asymmetric unit. The cross rotation function search and the translation function search show apparent peaks and thus determine the orientation and position of DesB1-2 DPI molecule in the cell respectively. The subsequent three-dimensional structural rebuilding and refinement of DesB1-2 DPI molecule confirm the results by molecular replacement method.  相似文献   

7.
D-glyceraldehyde-3-phosphate dehydrogenase (holo-GAPDH) from Palinurus versicolor was crystallized in a novel crystal form by the method of sitting-drop vapor diffusion.The crystals have space group P4212,cell parameters a=15.49 nm,c=8.03 nm and two subunits per asymmetric unit.The crystal structure at 0.34 nm was determined by the molecular replacement method.The final model has crystallographic Rfree and R factors of 0.274 and 0.262,and r.m.s.deviations of 0.002 nm for bond lengths and 2.33°for bond angles.The two subunits in asymmetric unit are similar to each other not only in the three-dimensional structure,but also in average temperature factors.This result demonstrates that the obvious difference in average temperature factors for the different subunits in C2 crystal form reported previously may be attributed to the different crystallographic environments of the subunits.This further supports that holo-GAPDH has a good 222 molecular symmetry.  相似文献   

8.
The crystal structure of an alkaline protease from Bacillus alcalophilus has been determined by X-ray diffraction at 2.4 A resolution. The enzyme crystallizes in space group P2(1)2(1)2(1) with lattice constants a = 53.7, b = 61.6, c = 75.9 A. The structure was solved by molecular replacement using the structure of subtilisin Carlsberg as search model. Refinement using molecular dynamics and restrained least squares methods results in a crystallographic R-factor of 0.185. The tertiary structure is very similar to that of subtilisin Carlsberg. The greatest structural differences occur in loops at the surface of the protein.  相似文献   

9.
Crystals of benzamidine-inhibited trypsin from the North Atlantic salmon (Salmo salar) have been grown from ammonium sulphate solution at pH 5.0. Two crystal forms suitable for X-ray structure analysis, obtained from a hanging-drop experiment, have been characterized. Both belong to space-group P22(1)2(1) with cell dimensions a = 39.2 A, b = 62.4 A, c = 84.6 A and a = 31.4 A, b = 74.8 A, c = 83.5 A, for forms I and II, respectively. Intensity data to 1.82 A have been collected for crystal form I on a CAD4 diffractometer, and initial phases have been obtained by molecular replacement methods. The conventional R-factor after two rounds of model building and subsequent refinement is 0.25 for data between 6.0 and 2.0 A. So far no water molecules have been included in the model.  相似文献   

10.
The X-ray crystal structure of the enzyme trypanothione reductase, isolated from the trypanosomatid organism Crithidia fasciculata, has been solved by molecular replacement. The search model was the crystal structure of human glutathione reductase that shares approximately 40% sequence identity. The trypanosomal enzyme crystallizes in the tetragonal space group P4(1) with unit cell lengths of a = 128.9 A and c = 92.3 A. The asymmetric unit consists of a homodimer of approximate molecular mass 108 kDa. We present the structural detail of the active site as derived from the crystallographic model obtained at an intermediate stage of the analysis using diffraction data to 2.8 A resolution with an R-factor of 23.2%. This model has root-mean-square deviations from ideal geometry of 0.026 A for bond lengths and 4.7 degrees for bond angles. The trypanosomid enzyme assumes a similar biological function to glutathione reductase and, although similar in topology to human glutathione reductase, has an enlarged active site and a number of amino acid differences, steric and electrostatic, which allows it to process only the unique substrate trypanothione and not glutathione. This protein represents a prime target for chemotherapy of several debilitating tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania. The structural differences between the parasite and host enzymes and their substrates thus provides a rational basis for the design of new drugs active against trypanosomes. In addition, our model explains the results of site-directed mutagenesis experiments, carried out on recombinant trypanothione reductase and glutathione reductases, designed by consideration of the crystal structure of human glutathione reductase.  相似文献   

11.
Cyclophilins constitute a family of proteins involved in many essential cellular functions. They have also been identified as a panallergen family able to elicit IgE-mediated hypersensitivity reactions. Moreover, it has been shown that human cyclophilins are recognized by serum IgE from patients sensitized to environmental cyclophilins. IgE-mediated autoreactivity to self-antigens that have similarity to environmental allergens is often observed in atopic disorders. Therefore comparison of the crystal structure of human proteins with similarity to allergens should allow the identification of structural similarities to rationally explain autoreactivity. A new cyclophilin from Aspergillus fumigatus (Asp f 27) has been cloned, expressed and showed to exhibit cross-reactivity in vitro and in vivo. The three-dimensional structure of cyclophilin from the yeast Malassezia sympodialis (Mala s 6) has been determined at 1.5 A (1 A=0.1 nm) by X-ray diffraction. Crystals belong to space group P4(1)2(1)2 with unit cell dimensions of a=b=71.99 A and c=106.18 A. The structure was solved by molecular replacement using the structure of human cyclophilin A as the search model. The refined structure includes all 162 amino acids of Mala s 6, an active-site-bound Ala-Pro dipeptide and 173 water molecules, with a crystallographic R- and free R-factor of 14.3% and 14.9% respectively. The overall structure consists of an eight-stranded antiparallel beta-barrel and two alpha-helices covering the top and bottom of the barrel, typical for cyclophilins. We identified conserved solvent-exposed residues in the fungal and human structures that are potentially involved in the IgE-mediated cross-reactivity.  相似文献   

12.
D-glyceraldehyde-3-phosphate dehydrogenase (holo-GAPDH) from Palinurus versicolor was crystallized in a novel crystal form by the method of sitting-drop vapor diffusion. The crystals have space group P4212, cell parameters a=15.49 nm, c=8.03 nm and two subunits per asymmetric unit. The crystal structure at 0.34 nm was determined by the molecular replacement method. The final model has crystallographic Rfree and R factors of 0.274 and 0.262, and r.m.s. deviations of 0.002 nm for bond lengths and 2.33?for bond angles. The two subunits in asymmetric unit are similar to each other not only in the three-dimensional structure, but also in average temperature factors. This result demonstrates that the obvious difference in average temperature factors for the different subunits in C2 crystal form reported previously may be attributed to the different crystallographic environments of the subunits. This further supports that holo-GAPDH has a good 222 molecular symmetry.  相似文献   

13.
The crystal structure of the Fab fragment of the murine monoclonal anti-dinitrophenyl-spin-label antibody AN02 complexed with its hapten has been solved at 2.9 A resolution using a novel molecular replacement method. Prior to translation searches, a large number of the most likely rotation function solutions were subjected to a rigid body refinement against the linear correlation coefficient between intensities of observed and calculated structure factors. First, the overall orientation of the search model and then the orientations and positions of the four Fab domains (VH, VL, CH1 and CL) were refined. This procedure clearly identified the correct orientation of the search model. The refined search model was then subjected to translation searches which unambiguously determined the enantiomer and position in the unit cell of the crystal. The successful search model was refined 2.5 A crystal structure of the Fab fragment of HyHel-5 from which non-matching residues in the variable domains had been removed. HyHel-5 is a murine monoclonal antibody whose heavy and light chains are of the same subclass (gamma 1, kappa, respectively) as AN02. After molecular replacement the structure of the AN02 Fab has been refined using simulated annealing in combination with model building and conjugate gradient refinement to a current crystallographic R-factor of 19.5% for 12,129 unique reflections between 8.0 and 2.9 A. The root-mean-square (r.m.s.) deviation from ideal bond lengths is 0.014 A, and the r.m.s. deviation from ideal bond angles is 3.1 degrees. The electron density reveals the hapten sitting in a pocket formed by the loops of the complementarity determining region. The dinitrophenyl ring of the hapten is sandwiched between the indole rings of Trp96 of the heavy-chain and Trp91 of the light-chain. The positioning of the hapten and general features of the combining site are in good agreement with the results of earlier nuclear magnetic resonance experiments.  相似文献   

14.
The anti-Lewis alpha mouse immunoglobulin CF4C4 (IgGl, k) Fab has been crystallized from 58% saturated ammonium sulfate in space group Pl; unit cell dimensions a = 43.4 A b = 41.7 A, c = 62.0 A, a = 72.7 degrees, beta = 96.6 degrees, gamma = 100.1 degrees. X-ray diffraction data have been measured beyond 3.0 A Bragg spacing. The crystal structure has been determined by molecular replacement methods, using as search models the constant and variable domains of the mouse immunoglobulin McPC603 (IgA, kappa) Fab. The crystallographic residual for the data 5.0 to 4.0 A, is 0.47. The approximate 2-fold axis relating the VL and the VH domains forms an angle of 164 degrees with the 2-fold axis relating the constant domains. The crystal packing is reasonable.  相似文献   

15.
The crystal structure of C-phycocyanin, a light-harvesting phycobiliprotein from cyanobacteria (blue-green algae) Spirulina platensis has been solved by molecular replacement technique. The crystals belong to space group P2(1) with cell parameters a = 107.20, b = 115.40, c = 183.04 A; beta = 90.2 degrees. The structure has been refined to a crystallographic R factor of 19.2% (R(free) = 23.9%) using the X-ray diffraction data extending up to 2.2 A resolution. The asymmetric unit of the crystal cell consists of two (alphabeta)6-hexamers, each hexamer being the functional unit in the native antenna rod of cyanobacteria. The molecular structure resembles that of other reported C-phycocyanins. However, the unique form of aggregation of two (alphabeta)6-hexamers in the crystal asymmetric unit, suggests additional pathways of energy transfer in lateral direction between the adjacent hexamers involving beta155 phycocyanobilin chromophores.  相似文献   

16.
A fluorescent tandem phycobiliprotein conjugate with a large Stokes shift was prepared by the covalent attachment of phycoerythrin to allophycocyanin. The efficiency of energy transfer from phycoerythrin to allophycocyanin in this disulfide-linked conjugate was 90%. A distinctive feature of this phycocyanin conjugate is the wide separation between the intense absorption maximum of phycoerythrin (epsilon = 2.4 x 10(6) cm-1 M-1 at 545 nm) and the fluorescence emission maximum of allophycocyanin (660 nm). Energy transfer from a donor to a covalently attached acceptor can be used to adjust the magnitude of the Stokes shift. Tandem phycobiliprotein conjugates can be used to advantage in fluorescence-activated cell sorting, fluorescence microscopy, and fluorescence immunoassay analyses.  相似文献   

17.
Structure of Rhodopseudomonas sphaeroides R-26 reaction center   总被引:30,自引:0,他引:30  
The molecular replacement method has been successfully used to provide a structure for the photosynthetic reaction center of Rhodopseudomonas sphaeroides at 3.7 A resolution. Atomic coordinates derived from the R. viridis reaction center were used in the search structure. The crystallographic R-factor is 0.39 for reflections between 8 and 3.7 A. Validity of the resulting model is further suggested by the visualization of amino acid side chains not included in the R. viridis search structure, and by the arrangements of the reaction centers in the unit cell. In the initial calculations quinones or pigments were not included; nevertheless, in the resulting electron density map, electron density for both quinones QA and QB appears along with the bacteriochlorophylls and bacteriopheophytins. Kinetic analysis of the charge recombination shows that the secondary quinone is fully functional in the R. sphaeroides crystal.  相似文献   

18.
The form-B monodinic insulin crystal was obtained from the sodium citrate buffer with 1% zinc chloride, keeping phenolic content between 0.76% and 1.25%. Its space group is P21, cell constants are: a = 4.924nm, b=6.094nm, c=4.818nm, β=95.8°. There are 6 insulin molecules which form a hexamer. The initial phase was obtained by using rotation function program of X-PLOR program package and molecular packing program of our laboratory. The molecular model was chosen from 4 zinc bovine insulin hexamer. After the preliminary refinement by using the rnacromolecular rigid body refinement technique, the molecular model was further refined and adjusted by using the energy-minimizing stereochemically restrained least-squared refinement on the difference Fourier maps. The finial R-factor is 214% at 0.3nm resolution, the r.m.s. deviations from standard bond length and bond angle are 0.0022nm and 4.7°, respectively.  相似文献   

19.
Yeast peroxisomal catalase A, obtained at high yields by over expression of the C-terminally modified gene from a 2 mu-plasmid, has been crystallized in a form suitable for high resolution X-ray diffraction studies. Brownish crystals with bipyrimidal morphology and reaching ca. 0.8 mm in size were produced by the hanging drop method using ammonium sulphate as precipitant. These crystals diffract better than 2.0 A resolution and belong to the hexagonal space group P6(1)22 with unit cell parameters a = b = 184.3 A and c = 305.5 A. An X-ray data set with 76% completeness at 3.2 A resolution was collected in a rotating anode generator using mirrors to improve the collimation of the beam. An initial solution was obtained by molecular replacement only when using a beef liver catalase tetramer model in which fragments with no sequence homology had been omitted, about 150 residues per subunit. In the structure found a single molecule of catalase A (a tetramer with accurate 222 molecular symmetry) is located in the asymmetric unit of the crystal with an estimated solvent content of about 61%. The preliminary analysis of the structure confirms the absence of a carboxy terminal domain as the one found in the catalase from Penicillium vitalae, the only other fungal catalase structure available. The NADPH binding site appears to be involved in crystal contacts, suggesting that heterogeneity in the occupancy of the nucleotide can be a major difficulty during crystallization.  相似文献   

20.
The crystal structure of an acidic neurotoxin, BmK M8, from Chinese scorpion Buthus martensii Karsch was determined at 0.25 nm resolution. The X-ray diffraction data of BmK M8 crystals at 0.25nm resolution were collected on a Siemens area detector. Using molecular replacement method with a basic scorpion toxin AaH II in a search model, the cross-rotation function, PC-refinement and translation function were calculated by X-PLOR program package. The correct orientation and position of BmK M8 molecule in crystal were determined in a resolution range of 1.5 - 0.35nm, The oystallographic refinement was further performed by stereo-chemical restrict least-square technique, followed by simulated annealing, slow-cooling protocols. The final crystallographic R-factor at 0.8-0.25 nm is 0.171. The standard deviations of bond length and bond angle from ideality are 0.001 7nm and 2.24° , respectively. The final model of BmK M8 structure is composed of a dense core of secondary structure elements by a stretch of α-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号