首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interaction between the Mn-cluster and its peripheral ligands in oxygen-evolving center is still unclear. Theoretical investigation on the coordination of histidine, H2O, and Cl to Mn2O2 units in OEC is conducted. The following conclusions are obtained: (i) both histidine and H2O molecule, bound to the two Mn ions, respectively, are vertical to the Mn2O2 plane, and maintain a large distance; (ii) the two H2O molecules cannot bind to the same Mn2O2 unit. Based on Mn-cluster structure in OEC, we theoretically predict that two H2O molecules bind to the two Mn ions at the "C"-shaped open end in S0 state, while two His residues at the closed end. Cl ion can only terminally ligate at the open end. Individual valence for the four Mn ions in S0 state is assigned.  相似文献   

2.
3.
Natural osmoregulatory substances (osmolytes) allow a wide variety of organisms to adjust to environments with high salt and/or low water content. In addition to their role in osmoregulation, some osmolytes protect proteins from denaturation and deactivation by, for example, elevated temperature and chaotropic compounds. A ubiquitous protein-stabilizing osmolyte is glycine betaine (N-trimethyl glycine). Its presence has been reported in bacteria, in particular cyanobacteria, in animals and in plants from higher plants to algae. In the present review we describe the experimental evidence related to the ability of glycine betaine to enhance and stabilize the oxygen-evolving activity of the Photosystem II protein complexes of higher plants and cyanobacteria. The osmolyte protects the Photosystem II complex against dissociation of the regulatory extrinsic proteins (the 18 kD, 23 kD and 33 kD proteins of higher plants and the 9 kD protein of cyanobacteria) from the intrinsic components of the Photosystem II complex, and it also stabilizes the coordination of the Mn cluster to the protein cleft. By contrast, glycine betaine has no stabilizing effect on partial photosynthetic processes that do not involve the oxygen-evolving site of the Photosystem II complex. It is suggested that glycine betaine might act, in part, as a solute that is excluded from charged surface domains of proteins and also as a contact solute at hydrophobic surface domains.  相似文献   

4.
Oxido-pincer ligands with phenolate-groups [2,6-bis(2-methoxyphenyl)pyridine (LOMe2), 2,6-bis(2-hydroxyphenyl)-pyridine (LOH2), 2,6-bis-(2,4-dimethoxyphenyl)-pyridine (LOMe4)] coordinate to CuII forming binuclear complexes which can be easily and reliably converted into mononuclear species. Their physical properties were analysed using EPR, optical spectroscopy and (spectro-)electrochemical methods. The results were compared to those of related NiII complexes and discussed in view of Cu-containing metalloenzymes. Due to the ligands flexibility the CuII/CuI redox couple exhibits high reversibility, while the ligand-centred oxidation leads to highly reactive phenoxy radicals. Reduction of the LOH2 complex leads to sequential deprotonation. The ligand LOMe4 and the derived complexes show blue luminescence, which can be rationalised from its molecular structure (analysed by XRD).  相似文献   

5.
Extraction of PS II particles with 50 mM cholate and 1 M NaCl releases several proteins (33-, 23-, 17- and 13 kDa) and lipids from the thylakoid membrane which are essential for O2 evolution, dichlorophenolindophenol (DCIP) reduction and for stable charge separation between P680+ and QA -. This work correlates the results on the loss of steady-state rates for O2 evolution and PS II mediated DCIP photo-reduction with flash absorption changes directly monitoring the reaction center charge separation at 830 nm due to P680+, the chlorophyll a donor. Reconstitution of the extracted lipids to the depleted membrane restores the ability to photo-oxidize P680 reversibly and to reduce DCIP, while stimulating O2 evolution minimally. Addition of the extracted proteins of masses 33-, 23- and 17- kDa produces no further stimulation of DCIP reduction in the presence of an exogenous donor like DPC, but does enhance this rate in the absence of exogenous donors while also stimulating O2 evolution. The proteins alone in the absence of lipids have little influence on charge separation in the reaction center. Thus lipids are essential for stable charge separation within the reaction center, involving formation of P680+ and QA -.Abbreviations A830 Absorption change at 830 nm - Chl Chlorophyll - D1 primary electron donor to P680 - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - MOPS 3-(N-morpholino)propanesulfonic acid - P680 reaction center chlorophyll a molecule of photosystem II - PPBQ Phenyl-p-benzoquinone - PS II Photosystem II - QA, QB first and second quinone acceptors in PS II - V-DCIP rate of DCIP reduction - V-O2 rate of oxygen evolution - Y water-oxidizing enzyme system - CHAPS 3-Cyclohexylamino-propanesulfonic acid  相似文献   

6.
18 O isotope exchange measurements of photosystem II (PSII) in thylakoids from wild-type and mutant Synechocystis have been performed to investigate binding of substrate water to the high-affinity Mn4 site in the oxygen-evolving complex (OEC). The mutants investigated were D1-D170H, a mutation of a direct ligand to the Mn4 ion, and D1-D61N, a mutation in the second coordination sphere. The substrate water 18 O exchange rates for D61N were found to be 0.16+/-0.02 s(-1) and 3.03+/-0.32 s(-1) for the slow and fast phases of exchange, respectively, compared with 0.47+/-0.04 s(-1) and 19.7+/-1.3 s(-1) for the wild-type. The D1-D170H rates were found to be 0.70+/-0.16 s(-1) and 24.4+/-4.6 s(-1) and thus are almost within the error limits for the wild-type rates. The results from the D1-D170H mutant indicate that the high-affinity Mn4 site does not directly bind to the substrate water molecule in slow exchange, but the binding of non-substrate water to this Mn ion cannot be excluded. The results from the D61N mutation show an interaction with both substrate water molecules, which could be an indication that D61 is involved in a hydrogen bonding network with the substrate water. Our results provide limitations as to where the two substrate water molecules bind in the OEC of PSII.  相似文献   

7.
The kinetics of flash-induced electron transport were investigated in oxygen-evolving Photosystem II preparations, depleted of the 23 and 17 kDa polypeptides by washing with 2 M NaCl. After dark-adaptation and addition of the electron acceptor 2,5-dichloro-p-benzoquinone, in such preparations approx. 75% of the reaction centers still exhibited a period 4 oscillation in the absorbance changes of the oxygen-evolving complex at 350 nm. In comparison to the control preparations, three main effects of NaCl-washing could be observed: the half-time of the oxygen-evolving reaction was slowed down to about 5 ms, the misses and double hits parameters of the period 4 oscillation had changed, and the two-electron gating mechanism of the acceptor side could not be detected anymore. EPR-measurements on the oxidized secondary donor Z+ confirmed the slower kinetics of the oxygen-releasing reaction. These phenomena could not be restored by readdition of the released polypeptides nor by the addition of CaCl2, and are ascribed to deleterious action of the highly concentrated NaCl. Otherwise, the functional coupling of Photosystem II and the oxygen-evolving complex was intact in the majority of the reaction centers. Repetitive flash measurements, however, revealed P+Q recombination and a slow Z+ decay in a considerable fraction of the centers. The flash-number dependency of the recombination indicated that this reaction only appeared after prolonged illumination, and disappeared again after the addition of 20 mM CaCl2. These results are interpreted as a light-induced release of strongly bound Ca2+ in the salt-washed preparations, resulting in uncoupling of the oxygen-evolving system and the Photosystem II reaction center, which can be reversed by the addition of a relatively high concentration of Ca2+.  相似文献   

8.
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a core complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the core complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II core complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.Abbreviations A 23187 ionophore that exchanges divalent cations with H+ - Chl chlorophyll - cyt cytochrome - DCPIP dichlorophenolindophenol - DPC diphenylcarbazide - EGTA ethyleneglycoltetraacetic acid - P680 the chlorophyll a reaction center of photosystem II - pheo pheophytin - PQ plastoquinone - PS photosystem - QA and QB primary and secondary plastoquinone electron acceptors of photosystem II - Sn (n=0, 1, 2, 3, 4) charge accumulating state of the oxygen evolving system - Signals IIvf, IIf and IIs epr-detectable free radicals associated with the oxidizing side of photosystem II - Z primary electron donor to the photosystem II reaction center The survey of literature for this review ended in September, 1984.  相似文献   

9.
The obligate shade plant, Tradescantia albiflora Kunth grown at 50 mol photons · m–2 s–1 and Pisum sativum L. acclimated to two photon fluence rates, 50 and 300 mol · m–2 · s–1, were exposed to photoinhibitory light conditions of 1700 mol · m–2 · s–1 for 4 h at 22° C. Photosynthesis was assayed by measurement of CO2-saturated O2 evolution, and photosystem II (PSII) was assayed using modulated chlorophyll fluorescence and flash-yield determinations of functional reaction centres. Tradescantia was most sensitive to photoinhibition, while pea grown at 300 mol · m–2 · s–1 was most resistant, with pea grown at 50 mol · m–2 · s–1 showing an intermediate sensitivity. A very good correlation was found between the decrease of functional PSII reaction centres and both the inhibition of photosynthesis and PSII photochemistry. Photoinhibition caused a decline in the maximum quantum yield for PSII electron transport as determined by the product of photochemical quenching (qp) and the yield of open PSII reaction centres as given by the steady-state fluorescence ratio, FvFm, according to Genty et al. (1989, Biochim. Biophys. Acta 990, 81–92). The decrease in the quantum yield for PSII electron transport was fully accounted for by a decrease in FvFm, since qp at a given photon fluence rate was similar for photoinhibited and noninhibited plants. Under lightsaturating conditions, the quantum yield of PSII electron transport was similar in photoinhibited and noninhibited plants. The data give support for the view that photoinhibition of the reaction centres of PSII represents a stable, long-term, down-regulation of photochemistry, which occurs in plants under sustained high-light conditions, and replaces part of the regulation usually exerted by the transthylakoid pH gradient. Furthermore, by investigating the susceptibility of differently lightacclimated sun and shade species to photoinhibition in relation to qp, i.e. the fraction of open-to-closed PSII reaction centres, we also show that irrespective of light acclimation, plants become susceptible to photoinhibition when the majority of their PSII reaction centres are still open (i.e. primary quinone acceptor oxidized). Photoinhibition appears to be an unavoidable consequence of PSII function when light causes sustained closure of more than 40% of PSII reaction centres.Abbreviations Fo and Fo minimal fluorescence when all PSII reaction centres are open in darkness and steady-state light, respectively - Fm and Fm maximal fluorescence when all PSII reaction centres are closed in darkand light-acclimated leaves, respectively - Fv variable fluorescence - (Fm-Fo) under steady-state light con-ditions - Fs steady-state fluorescence in light - QA the primary,stable quinone acceptor of PSII - qNe non-photochemical quench-ing of fluorescence due to high energy state - (pH); qNi non-photochemical quenching of fluorescence due to photoinhibition - qp photochemical quenching of fluorescence To whom correspondence should be addressedThis work was supported by the Swedish Natural Science Research Council (G.Ö.) and the award of a National Research Fellowship to J.M.A and W.S.C. We thank Dr. Paul Kriedemann, Division of Forestry and Forest Products, CSIRO, Canberra, Australia, for helpful discussions.  相似文献   

10.
The 23 kDa polypeptide of the oxygen-evolving complex of photosystem II has been extracted from pea photosystem II particles by washing with 1 M NaCl and purified by anion-exchange chromatography. The N-terminal amino acid sequence has been determined and specific antisera have been raised in rabbits and used to screen a pea-leaf cDNA library in gt11. Determination of the nucleotide sequence of two clones provided the nucleotide sequence for the full 23 kDa polypeptide. The deduced amino acid sequence showed it to code for a mature protein of 186 amino acid residues with an N-terminal presequence of 73 amino acid residues showing a high degree of conservation with previously reported 23 kDa sequences from spinach and Chlamydomonas. Southern blots of genomic DNA from pea probed with the labelled cDNA gave rise to only one band suggesting that the protein is encoded by a single gene. Northern blots of RNA extracted from various organs indicated a message of approximately 1.1 kb, in good agreement with the size of the cDNA, in all chlorophyll-containing tissues. Western blots of protein extracted from the same organs indicated that the 23 kDa polypeptide was present in all major organs of the plant except the roots.Abbreviations bis-Tris bis (2-hydroxyethyl) imino-tris (hydroxymethyl)-methane - pfu plaque-forming units  相似文献   

11.
The fluorescence decay of chlorophyll in spinach thylakoids was measured as a function of the degree of closure of Photosystem II reaction centers, which was set for the flowed sample by varying either the preillumination by actinic light or the exposure of the sample to the exciting pulsed laser light. Three exponential kinetic components originating in Photosystem II were fitted to the decays; a fourth component arising from Photosystem I was determined to be negligible at the emission wavelength of 685 nm at which the fluorescence decays were measured. Both the lifetimes and the amplitudes of the components vary with reaction center closure. A fast (170–330 ps) component reflects the trapping kinetics of open Photosystem II reaction centers capable of reducing the plastoquinone pool; its amplitude decreases gradually with trap closure, which is incompatible with the concept of photosynthetic unit connectivity where excitation energy which encounters a closed trap can find a different, possibly open one. For a connected system, the amplitude of the fast fluorescence component is expected to remain constant. The slow component (1.7–3.0 ns) is virtually absent when the reaction centers are open, and its growth is attributable to the appearance of closed centers. The middle component (0.4–1.7 ns) with approximately constant amplitude may originate from centers that are not functionally linked to the plastoquinone pool. To explain the continuous increase in the lifetimes of all three components upon reaction center closure, we propose that the transmembrane electric field generated by photosynthetic turnover modulates the trapping kinetics in Photosystem II and thereby affects the excited state lifetime in the antenna in the trap-limited case.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PQ plastoquinone - PSI and PSII Photosystem I and II - QA and QB primary and secondary quinone acceptor of PSII  相似文献   

12.
Theoretical calculation was carried out on the primary electron donor P_(870) of photosynthetic bacteria. The results show that: (ⅰ) the bimolecular structure of the primary electron donor is more advantageous in energy than monomolecular structure; (ⅱ) the initial configuration of primary electron donor is no longer stable and changes to the configuration with lower energy and chemical reactivity after the charge separation. In the P_(870), such structural change is completed through the rotation of C_3 acetyl, so the oxygen atom of acetyl interacts with the magnesium atom of another bacterio-chlorophyll molecule, and the total energy and chemical reactivity are reduced evidently. It is suggested that the structural change of the primary electron donor is important in preventing the occurrence of charge recombination during the primary reaction and maintaining the high efficiency of the conversion of sun-light to chemical energy. A new mechanism of primary reaction has been proposed, which can give r  相似文献   

13.
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.  相似文献   

14.
The distribution of the primary quinone and of the pheophytin acceptors has been studied in PS II particles isolated from Chlamydomonas reinhardtii, with respect to the distribution of the apoproteins of the two chlorophyll-protein complexes associated with the PS II core. We show that photoreduction of the primary quinone requires the presence of the 50 and 47 kDa polypeptides. On the contrary, charge separation between P-680 and the pheophytin acceptor molecules can occur within the chlorophyll-protein complex of which the 50 kDa polypeptide is the apoprotein. Functional analysis of the PS II fractions shows that an active PS II center contains one photoreducible quinone and one photoreducible pheophytin per 45 chlorophyll molecules. Stoichiometric analysis of the PS II fractions shows that a PS II reaction center contains 45 chlorophyll molecules associated with most likely one copy of the 50 kDa and the 47 kDa polypeptides.  相似文献   

15.
The germinal center (GC) develops after antigen stimulation and is thought to occur at the site of various immune responses. We observed apoptotic cells within the GC using in situ end labeling (TUNEL), small amount DNA ladder assay, and RT-PCR analysis of Bcl-2 mRNA expression. Apoptosis was detected within GCs at all phases of the GC reaction by both TUNEL and DNA ladder assays. The number of TUNEL+ nuclei within the GC did not increase over the course of the GC reaction. However, the density of DNA in the ladder assay was higher in later-phase GCs. Bcl-2 mRNA expression was detected within GCs during the early phases of the GC reaction. These results indicate that accumulation of apoptotic cells and rescue from apoptosis occur within chicken GCs. In the present paper, the reasons for the accumulation of apoptotic cells will be discussed.This work was supported by Grants-in-Aid for Scientific Research (Nos. 11670322 and 10306017) from the Ministry of Education, Science, Sport and Culture, and the Ministry of Agriculture, Forestry and Fisheries of Japan (Special Scientific Research and Pioneering Research Project in Biotechnology), as well as from the Bio-oriented Technology Research Advancement Institution (BRAIN)  相似文献   

16.
The extrinsic 33 kDa polypeptide of the water-oxidizing complex has been extracted from pea photosystem II particles by washing with alkaline-Tris and purified by ion-exchange chromatography. The N-terminal amino acid sequence has been determined, and specific antisera have been raised in rabbits and used to screen a pea leaf cDNA library in gt11. Determination of the nucleotide sequence of positive clones revealed an essentially full-length cDNA for the 33 kDa polypeptide, the deduced amino acid sequence showing it to code for a mature protein of 248 amino acids with an N-terminal transit peptide of 81 amino acids. The protein showed a high degree of conservation with previously reported sequences for the 33 kDa protein from other species and the sequence contained a putative Ca2+-binding site with homology to mammalian intestinal calcium-binding proteins. Northern analysis of total pea RNA indicated a message of approximately 1.4 kb, in good agreement with the size of the cDNA obtained at 1.3 kbp. Southern blots of genomic DNA probed with the labelled cDNA give rise to several bands suggesting that the 33 kDa polypeptide is coded by a multi-gene family.Abbreviations ATZ - anilinothiazolinone - DITC - p-phenylenediisothiocyanate - PTH - phenylthiohydantoin - TFA - trifluoroacetic acid - Tris - tris (hydroxymethyl) aminomethane - bis-Tris - bis (2-hydroxyethyl) imino-tris (hydroxymethyl)-methane - p.f.u. - plaque-forming units  相似文献   

17.
Reactions of 1-{[2-(arylazo)phenyl]iminomethyl}-2-phenol, HLsal, 1, [where H represents the dissociable protons upon complexation and aryl groups of HLsal are phenyl for HL1sal, p-methylphenyl for HL2sal, and p-chlorophenyl for HL3sal], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded complexes of composition [(Lsal)Ru(CO)(Cl)(PPh3)] and (Lsal)2Ru where the N,N,O donor tridentate (Lsal) ligands coordinated the metal centre facially and meridionally, respectively. Stepwise formation of [(Lsal)2Ru] has been ascertained. Reaction of 1-{[2-(arylazo)phenyl]iminomethyl}-2-napthol, HLnap, 2, [where H represents the dissociable protons upon complexation and aryl groups of HLnap are phenyl for HL1nap, p-methylphenyl for HL2nap, and p-chlorophenyl for HL3nap], ligands with Ru(H)(CO)(Cl)(PPh3)3 afforded exclusively the complexes of composition [(Lnap)Ru(CO)(Cl)(PPh3)], where N,N,O donor tridentate (Lnap) was facially coordinated. The ligand 1-{[2-(phenylazo)phenyl]aminomethyl}-2-phenol, HL, 3, was prepared by reducing the aldimine function of HL1sal. Reaction of HL with Ru(PPh3)3Cl2 afforded new azosalen complex of Ru(III) in concert with regiospecific oxygenation of phenyl ring of HL. All the new ligands were characterized by analytical and spectroscopic techniques. The complexes were characterized by analytical and spectroscopic techniques and subsequently confirmed by the determination of X-ray structures of selected complexes.  相似文献   

18.
Heat inactivation of diphenylcarbazide (DPC)-supported 2,6-dichloroindophenol (DCIP) photoreduction by photosystem II (PS II) particles and non-oxygen-evolving PS II core complex isolated from spinach ( Spinacia oleracea L. cv. Kyoho) was suppressed under annealing conditions, and accelerated in the presence of EDTA or high concentration of divalent cations. After heating at 45°C for 10 min, half-maximal annealing effects occurred at 35°C. Minimum acceleration was observed in the presence of 1 m M Mg2+, implying the existence of a cation-specific site in the vicinity of the PS II reaction center. The acceleration depended on the temperature at which EDTA was added to PS II particles. Half-acceleration by EDTA occurred at 35°C. Glutaraldehyde stabilized PS II particles against heat inactivation of PS II photochemical reactions.  相似文献   

19.
A hypothesis is proposed to explain the function of Cl- in activating the oxygenevolving complex (OEC) of photosystem II (PS II), based on the results of recent 35Cl-NMR studies. The putative mechanism involves Cl- binding to two types of sites. An intrinsic site is suggested to be composed of three histidyl residues (His 332 and His 337 from D1 and His 337 D2). It is proposed that Cl- binding to this site accelerates the abstraction of H+ from water by raising the pKa's of the histidine imidazole groups. Cl- binding also stimulates the transfer of H+ from this intrinsic site to a set of extrinsic sites on the 33 kD extrinsic polypeptide. The extrinsic Cl- binding sites are suggested to involve four protein domains that are linked together by salt-bridge contacts. Chloride and H+ donated from the intrinsic site attack these intramolecular salt-bridges in a defined sequence, thereby exposing previously inaccessible Cl- and H+ binding sites and stimulating the oxidation of water. This hypothesis also proposes a possible structure for the Mn active site within the D1/D2 complex. Specific amino-acid residues that are likely to participate as Mn lignads are identified on the lumenal portions of the D1 and D2 proteins that are different from those in the L and M subunits of photosynthetic bacteria; the choice of these residues is based on the metal coordination chemistry of these residues, their location within the polypeptide chain, the regularity of their spacing, and their conservation through evolution. The catalytic Mn-binding residues are suggested to be D-61, E-65, E-92, E-98, D-103; D-308, E-329, E-342 and E-333 in D1, and H-62, E-70, H-88, E-97, D-101; E-313, D-334, E-338 and E-345 in D2. Finally, this hypothesis identifies sites on both D2 and the 33 kD extrinsic polypeptide that might be involved in high- and low-affinity Ca2+ binding.To whom correspondence should be addressed  相似文献   

20.
Treatment of the ligands 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo), 1,9-bis(3,5-dimethyl-1-pyrazolyl)-3,7-dithianonane (bddn), and 1,6-bis(3,5-dimethyl-1-pyrazolyl)-2,5-dithiahexane (bddh) with several platinum starting materials as K2PtCl4, PtCl2, [PtCl2(CH3CN)2] and [PtCl2(PhCN)2] was developed under different conditions. The reactions did not yield pure products. The ratio of the NSSN, NS, SS, NN, and 2NS isomers has been calculated through NMR experiments. Treatment of the mixtures of complexes with NaBPh4 affords [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn). These Pt(II) complexes have been characterised by elemental analyses, conductivity measurements, IR and 1H and 13C NMR spectroscopy. The X-ray structures of the complexes [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) have also been determined. In these complexes, the metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether sulfur atoms. When the [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) complexes were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1), a mixture of isomers was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号