首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D-glyceraldehyde-3-phosphate dehydrogenase (holo-GAPDH) from Palinurus versicolor was crystallized in a novel crystal form by the method of sitting-drop vapor diffusion. The crystals have space group P4212, cell parameters a=15.49 nm, c=8.03 nm and two subunits per asymmetric unit. The crystal structure at 0.34 nm was determined by the molecular replacement method. The final model has crystallographic Rfree and R factors of 0.274 and 0.262, and r.m.s. deviations of 0.002 nm for bond lengths and 2.33?for bond angles. The two subunits in asymmetric unit are similar to each other not only in the three-dimensional structure, but also in average temperature factors. This result demonstrates that the obvious difference in average temperature factors for the different subunits in C2 crystal form reported previously may be attributed to the different crystallographic environments of the subunits. This further supports that holo-GAPDH has a good 222 molecular symmetry.  相似文献   

2.
Crystals of an L-asparaginase from Vibrio succinogenes were obtained with the hanging drop method from ammonium sulphate-containing solutions. The crystals belong to the orthorhombic space group P22(1)2(1) with unit cell dimensions of a = 71.3 A, b = 85.8 A, c = 114.0 A, and contain two tetrameric enzyme molecules per unit cell. There are two subunits in the asymmetric unit; a molecular dyad is coincident with the crystallographic dyad. The crystal lattice is similar to that reported for an Escherichia coli asparaginase. Rotation function calculations have revealed that the V. succinogenes enzyme has 222 point group symmetry in the crystal. The second and third molecular dyads differ, however, from the corresponding E. coli asparaginase dyads by approximately 40 degrees. The crystals diffract to at least 2.2 A resolution and are suitable for X-ray crystallographic structure determination.  相似文献   

3.
The crystal structure of (L-Arg)-B0 bovine insulin has been determined, using data to 0.21 nm and atomic parameters of 2Zn porcine insulin as a starting model, by the difference Fourier method, the restrained least square method and X-PLOR package, interspersed with careful review of the electron density, to a final R-factor of 0.182 and r.m.s. deviation of 0.002 2nm for the bond lengths and 4.3° for the bond angles. The electron densities of additional (L-Arg)-B0 residues to B-chain N-terminus of two monomers in each asymmetric unit are very dear. The crystallographic micro-environment of the N-terminus of the B-chain is different from that of rhombohedral 2-zinc insulin.  相似文献   

4.
Trypsin-modified alkaline phosphatase from Escherichia coli has been crystallized in a form distinct from the two known crystal forms of the native enzyme. The large well diffracting crystals belong to the orthorhombic space group P2(1)2(1)2(1), possess unit cell dimensions a = 56.0 A, b = 136.0 A, c = 283.9 A with 2 dimers per asymmetric unit, and are suitable for high resolution x-ray crystallographic studies. The observed structural and functional differences between the native and modified molecules are a result of peptide bond cleavage at Arg10-Ala11 with loss of the NH2-terminal decapeptide in both subunits of the dimer.  相似文献   

5.
The X-ray structure of a new crystal form of chicken heart muscle citrate synthase, grown from solutions containing citrate and coenzyme A or L-malate and acetyl coenzyme A, has been determined by molecular replacement at 2.8-A resolution. The space group is P4(3) with a = 58.9 A and c = 259.2 A and contains an entire dimer of molecular weight 100,000 in the asymmetric unit. Both "closed" conformation chicken heart and "open" conformation pig heart citrate synthase models (Brookhaven Protein Data Bank designations 3CTS and 1CTS) were used in the molecular replacement solution, with crystallographic refinement being initiated with the latter. The conventional crystallographic R factor of the final refined model is 19.6% for the data between 6- and 2.8-A resolution. The model has an rms deviation from ideal values of 0.034 A for bond lengths and of 3.6 degrees for bond angles. The conformation of the enzyme is essentially identical with that of a previously determined "open" form of pig heart muscle citrate synthase which crystallizes in a different space group, with one monomer in the asymmetric unit, from either phosphate or citrate solution. The crystalline environment of each subunit of the chicken enzyme is different, yet the conformation is the same in each. The open conformation is therefore not an artifact of crystal packing or crystallization conditions and is not species dependent. Both "open" and "closed" crystal forms of the chicken heart enzyme grow from the same drop, showing that both conformations of the enzyme are present at equilibrium in solution containing reaction products or substrate analogues.  相似文献   

6.
Glycolate oxidase, an enzyme that plays an important role in photorespiration in plants, has been purificant from spinach and crystallized in two different crystal forms. Form A which was obtained with tertiary butanol as precipitating agent belongs to space group I 422 with unit cell dimensions a = b = 148.1 A and c = 134.9 A. This form diffracts to high resolution and will be used for further crystallographic studies. Form B is also tetragonal, space group P42212, with cell dimensions a = b = 145.4 A and c = 104.2 A. This form was obtained from ammonium sulfate precipitations. Sodium dodecyl sulfate polyacrylamide gel electrophoresis shows that the enzyme is built up from subunits of molecular weight 37,000. The asymmetric units of both crystal forms contain at least two such subunits.  相似文献   

7.
The crystal structure of C-phycocyanin, a light-harvesting phycobiliprotein from cyanobacteria (blue-green algae) Spirulina platensis has been solved by molecular replacement technique. The crystals belong to space group P2(1) with cell parameters a = 107.20, b = 115.40, c = 183.04 A; beta = 90.2 degrees. The structure has been refined to a crystallographic R factor of 19.2% (R(free) = 23.9%) using the X-ray diffraction data extending up to 2.2 A resolution. The asymmetric unit of the crystal cell consists of two (alphabeta)6-hexamers, each hexamer being the functional unit in the native antenna rod of cyanobacteria. The molecular structure resembles that of other reported C-phycocyanins. However, the unique form of aggregation of two (alphabeta)6-hexamers in the crystal asymmetric unit, suggests additional pathways of energy transfer in lateral direction between the adjacent hexamers involving beta155 phycocyanobilin chromophores.  相似文献   

8.
The first odorant-binding protein isolated from mammalian nasal mucosa is a dimer of subunits of identical molecular weight (19,000) that specifically binds bell pepper odorants, "green" smelling compounds. The protein can be purified in milligram quantities from tissue extractions by sequential use of a silica based anion exchange column and Mono-P chromatofocussing column. In the presence of the binding compound 2-isobutyl-3-methoxypyrazine and of the organic solvent 2-methyl-2,4-pentanediol (17%, v/v), the protein crystallizes in the monoclinic space group P2(1), with unit cell constants a = 54.3 A, b = 66.7 A, c = 41.5 A, beta = 97.2 degrees. From consideration of the crystal packing densities compatible with its unit cell, it can be concluded that two subunits of 19,000 Mr each are present in the asymmetric unit. The diffraction pattern on still photographs of this crystal form of the protein extends to 2.5 A resolution and allows for a detailed crystallographic investigation.  相似文献   

9.
A novel fraction of c-phycocyanin from the thermophilic cyanobacterium Thermosynechcoccus vulcanus, with an absorption maxima blue-shifted to 612 nm (PC612), has been purified from allophycocyanin and crystallized. The crystals belong to the P63 space group with cell dimensions of 153 A x 153 A x 59 A with a single (alphabeta) monomer in the asymmetric unit, resulting in a solvent content of 65%, and diffract to 2.7 A. The PC612 crystal structure has been determined by molecular replacement and refined to a crystallographic R-factor of 20.9% (Rfree = 27.8%). The crystal packing in this form shows that the PC612 form of phycocyanin does not associate into hexamers and that its association with adjacent trimers in the unit cell is very different from that found in a previously determined structure of the normal form of T. vulcanus phycocyanin, which absorbs at 620 nm. Analysis of the PC612 structure shows that the alpha subunits, which typically form the interface between two trimers within a hexamer, have a high degree of flexibility, as indicated by elevated B-factors in portions of helices B, E, and G. Examination of calculated electron density omit maps shows that unlike all other structures of phycobiliproteins determined so far, the Asnbeta72 residue is not methylated, explaining the blue-shift in its absorption spectra. On the basis of the results presented here, we suggest that this new form of trimeric phycocyanin may constitute a special minor component of the phycobilisome and may form the contact between the phycocyanin rods and the allophycocyanin core.  相似文献   

10.
Dimeric lactoglobulin molecules exist in the open conformation at basic pH, whereas they exist in the closed conformation at acidic pH, after undergoing the Tanford transition around neutral pH. Orthorhombic crystals consisting of molecules in the open conformation, grown close to neutral pH, undergo a water-mediated transformation when the relative humidity around the crystals is reduced. The two subunits in the dimer are related by a crystallographic twofold axis in the native crystals while the dimer is asymmetric in the low humidity form. Interestingly, one of the subunits in the dimer in the low humidity form is in an open conformation while the other is in a closed conformation. This is the first observation of such an asymmetric dimer. A hydrogen bond between the side chains of Gln35 and Tyr42 exists and the side chain of Glu89 is substantially buried in the closed subunit of the asymmetric unit, as in other structures with molecules in the closed conformation. However, the closure of the EF loop is not complete; its conformation can be described as half-closed. A comparison of different crystal structures of beta-lactoglobulin indicates that the conformation of the loops in the molecule is substantially influenced by other factors such as crystal packing, the pH, and the composition of the medium, while the change in the conformation of the EF loop follows the Tanford transition. The mutual disposition of the two subunits in the low humidity form is halfway between those in the open and closed structures. The present work further demonstrates that structural changes that occur during partial dehydration could mimic those that occur during the action of proteins.  相似文献   

11.
The Antarctic eubacterium Pseudoalteromonas haloplanktis (Ph) produces a cold-active iron superoxide dismutase (SOD). PhSOD is a homodimeric enzyme, that displays a high catalytic activity even at low temperature. Using hanging-drop vapour-diffusion technique, PhSOD has been successfully crystallized in two different crystal forms. Both crystal forms are monoclinic with space group P2(1) and diffract to 2.1 A resolution. Form I has unit-cell parameters a=45.49A b=103.63A c=50.37A beta=108.2 degrees and contains a homodimer in the asymmetric unit. Form II has unit-cell parameters a=50.48A b=103.78A c=90.25A beta=103.8 degrees and an asymmetric unit containing two PhSOD homodimers. Structure determination has been achieved using molecular replacement. The crystallographic study of this cold-adapted enzyme could contribute to the understanding of the molecular mechanisms of cold-adaptation and of the high catalytic efficiency at low temperature.  相似文献   

12.
BmK M4 is a neutral neurotoxin in the BmK toxin series.It is medially toxic and belongs to group III α-toxins.The purified sample was crystallized in rhombic space group P61.Using an X-ray diffraction technique,the crystal structure of BmK M4 was revealed by molecular replacement at 0.20 nm resolution.The model was refined.The final crystallographic R factor was 0.142 and the free R factor was 0.173.The root mean square deviation is 0.001 5 nm for the bond length and 1.753°for the bond angles.64 water molecules were added to the asymmetric unit.The refined structure showed an unusual non-prolyl cis peptide bond at residue 10.The structure was compared with group II α-toxin BmK M8 (an acidic,weak toxin).The potential structural implications of the cis peptide bond were discussed.  相似文献   

13.
Using the crystal structure of allophycocyanin from cyanobacterium Spirulina platensis (APC-SP) as a search model,the crystal structure of allophycocyanin from red algae Porphyra yezoensis (APC-PY) has been studied by molecular replacement methods.The APC-PY crystals (Form 3) belong to the space group of R32,cell dimensions a=b= 10.53 nm,c=18.94 nm,α= β= 90°,γ=120°;there is one αβ monomer in each crystallographic asymmetric unit in the cell.The translation function search gave a unique peak with a correlation coefficient (Cc) of 67.0% and an R-factor of 36.1% for reflection data from 1.0 to 0.4 nm.Using the results by molecular replacement,the initial model of APC-PY was built,and the coincidence of the chromophore in APC-PY initial model with its 2Fo-Fc OMIT map further confirms the results by molecular replacement.  相似文献   

14.
The bilin binding protein of the butterfly Pieris brassicae has been prepared, crystallized and its crystal structure determined at high resolution using film and FAST area detector intensity data. The crystallographic asymmetric unit contains a tetramer of identical subunits with a molecular weight of about 90,000. The crystal structure was determined by isomorphous replacement. Use was made of the molecular symmetry to improve phases. A molecular interpretation of the electron density distribution and partial tracing of the polypeptide chain was possible without amino acid sequence information, as the fold is very similar to retinol binding protein. It is characterized by a beta-barrel formed by two orthogonal beta-sheets and an alpha-helix. The bilin pigment seems to be bound within the beta-barrel analogously to retinol in retinol binding protein. The tetramer in the crystal has C2 symmetry and is a dimer of dimers of quasi-equivalent subunits.  相似文献   

15.
Methanol dehydrogenase was purified from the obligate methanotroph, Methylosinus trichosporium OB3b, in two steps from disrupted biomass by aqueous two-phase partition and ion-exchange chromatography. Copartitioning of a cytochrome c was dependent upon the pH at which aqueous partition was carried out. The native enzyme has a Mr of 120,000, as determined by gel filtration chromatography, and consists of two identical subunits. The purified enzyme contained four electrophoretically distinct isoenzymes, with pI values of 6.3, 6.58, 6.63 and 6.88. The native enzyme has been crystallised in a form suitable for high-resolution X-ray crystallographic studies. The crystals diffract to better than 0.19 nm spacing and are relatively stable to irradiation with X-rays. The space group is P6(1)22 (or P6(5)22) with cell dimensions a = b = 10.21 nm, c = 29.32 nm and the crystal probably contains a single monomer in the asymmetric unit.  相似文献   

16.
A 7 Å resolution electron density map of a second crystal form (called BII) of yeast hexokinase B has been obtained. This crystal form, unlike the first crystal form (BI), binds nucleotide and sugar substrates. While the overall tertiary structure of each subunit appears to be largely the same in both crystal forms, the quaternary structure of the dimer is completely different in the two crystals. The two subunits in the crystallographic asymmetric unit of form BII are related by a molecular screw axis; that is, the two subunits are related by a 160 ° rotation and a 13 Å translation of one subunit relative to the other along the symmetry axis resulting in non-equivalent environments for the two chemically identical subunits. A deep cleft divides each subunit into two domains or lobes of roughly equal size. The helical regions which are clearly visible as rods of electron density in this map constitute at least 40 to 50% of the polypeptide chain and 70 to 80% of one of the lobes. At this resolution the molecule does not appear to be homologous in detail to other kinases such as phosphoglycerate kinase and adenylate kinase. Sugar substrates and inhibitors bind deeply in the cleft which separates the two lobes and produce substantial alterations in the protein structure.  相似文献   

17.
The light-harvesting pigment-protein complex B-phycoerythrin from the red alga Porphyridium sordidum has been isolated and crystallized. B-Phycoerythrin consists of three different subunits forming an (alpha beta)6 gamma aggregate. The three-dimensional structure of the (alpha beta)6 hexamer was solved by Patterson search techniques using the molecular model of C-phycocyanin from Fremyella diplosiphon. The asymmetric unit of the crystal cell (space group P3, with a = b = 111.2 A, c = 59.9 A, alpha = beta = 90 degrees, gamma = 120 degrees) contains two (alpha beta) monomers related by a local dyad. Three asymmetric units are arranged around the crystallographic 3-fold axis building an (alpha beta)6 hexamer, as in C-phycocyanin. The crystal structure has been refined by energy-restrained crystallographic refinement and model building. The conventional R-factor of the final model was 18.9% with data to 2.2 A resolution. The molecular structures of the alpha and beta-subunits resemble those of C-phycocyanin. Major changes in comparison to phycocyanin are caused by deletion or insertion of segments involved in protein-chromophore interactions. The singly linked phycoerythrobilin chromophores alpha-84, alpha-140a, beta-84 and beta-155 are each covalently bound to a cysteine by ring A. The doubly linked chromophore beta-50/beta-61 is attached at cysteine beta-50 through ring A and at cysteine beta-61 through ring D. B-Phycoerythrin contains additionally a 30 kDa gamma-subunit, which is presumably located in the central cavity of the hexamer. It is disordered, as a consequence of crystal and local symmetry averaging.  相似文献   

18.
Crystals of the fully oxidized form of desulfoferrodoxin were obtained by vapor diffusion from a solution containing 20% PEG 4000, 0.1 M HEPES buffer, pH 7.5, and 0.2 M CaCl2. Trigonal and/or rectangular prisms could be obtained, depending on the temperature used for the crystal growth. Trigonal prisms belong to the rhombohedral space group R32, with a = 112.5 A and c = 63.2 A; rectangular prisms belong to the monoclinic space group C2, with a = 77.7 A, b = 80.9 A, c = 53.9 A, and beta = 98.1 degrees. The crystallographic asymmetric unit of the rhombohedral crystal form contains one molecule. There are two molecules in the asymmetric unit of the monoclinic form, in agreement with the self-rotation function.  相似文献   

19.
The met repressor from Escherichia coli has been crystallized in space group P21, with unit cell dimensions a = 35.6 A, b = 62.6 A, c = 44.5 A, beta = 102.4 degrees and one aporepressor dimer per asymmetric unit. Preliminary X-ray diffraction photographs show measurable intensities to beyond 1.5 A resolution, and the crystal form is ideally suited to high-resolution crystallographic analysis (1 A = 0.1 nm).  相似文献   

20.
The complete amino acid sequence of a glutaminase-asparaginase from Acinetobacter glutaminasificans, for which a preliminary tertiary structure is available from crystallographic analysis, has been determined by automated Edman degradation of fragments produced by chemical and proteolytic cleavages. The protein consists of 331 amino acid residues and has a molecular weight of 35,500. The pattern of hydrophilic and hydrophobic regions is typical of a globular protein. A new crystal form of an Erwinia chrysanthemi 1125 asparaginase is reported. The space group is monoclinic C2, with unit cell parameters of: a = 107.8, b = 91.7, c = 129.2 A and beta = 91.7 degrees. A Vm of 2.25 A3/dalton was calculated for one tetramer of 35,100-dalton subunits per asymmetric unit. X-ray intensity data have been obtained to 2.2 A resolution. The point group symmetry of the Er. chrysanthemi tetramer is 222 from self-rotation function calculations. The relative orientations of an A. glutaminasificans glutaminase-asparaginase model and the Er. chrysanthemi asparaginase tetramer have been determined with the cross-rotation function, and translation function calculations have revealed a plausible location for the asparaginase tetramer in the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号