首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
"Treponema phagedenis" periplasmic flagella (PF) have two major protein bands at molecular weights of 33,000 and 39,800 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (R. J. Limberger and N. W. Charon, J. Bacteriol. 166:105-112, 1986). By use of Western blotting and a polyclonal antiserum directed toward the 33,000-molecular-weight PF protein, cell lysates of 12 species of spirochetes were surveyed for reactivity. Eight species of Treponema as well as Spirochaeta aurantia were positive. The results suggest that epitopes residing on the 33,000-molecular-weight PF protein of "T. phagedenis" are evolutionarily well conserved among the spirochetes.  相似文献   

2.
3.
We recently characterized the three-dimensional shape of Treponema phagedenis periplasmic flagella (PFs). In the course of these studies, we observed protrusions on swimming cells that resembled PFs. Here we present a detailed characterization of the shape, structure, and motion of these protrusions. Although protrusion formation occurred primarily in wild-type cells during the stationary phase, a large fraction of exponential-phase cells of cell cylinder helicity mutants (greater than 90% of mutant T-52) had protrusions. These results suggest that cells bearing protrusions can still participate in cell division. T. phagedenis protrusions had the identical helix handedness, pitch, and diameter to those of purified PFs. Protrusions were not present on mutants unable to synthesize PFs, but were present in all motile revertants which regained PFs. These results, taken together with electron microscope observations, suggest that protrusions consist of PFs surrounded by an outer membrane sheath. To analyze protrusion movements, we held cells against a coverglass surface with optical tweezers and observed the motion of protrusions by video-enhanced differential interference contrast light microscopy. Protrusions were found to gyrate in both clockwise and counterclockwise directions, and direct evidence was obtained that protrusions rotate. Protrusions were also observed on Treponema denticola and Borrelia burgdorferi. These were also left-handed and had the same helix handedness, pitch, and diameter as purified PFs from their respective species. The PFs from T. denticola had a helix diameter of 0.26 microns and a helix pitch of 0.78 micron; PFs from B. burgdorferi had a helix diameter of 0.28 micron and a helix pitch of 1.48 microns. Protrusions from these spirochete species had similar structures and motion to those of T. phagedenis. Our results present direct evidence that PFs rotate and support previously proposed models of spirochete motility.  相似文献   

4.
The filaments of spirochete periplasmic flagella (PFs) have a unique structure and protein composition. In most spirochetes, the PFs consist of a core of at least three related proteins (FlaB1, FlaB2, and FlaB3) and a sheath of FlaA protein. The functions of these filament proteins remain unknown. In this study, we used a multidisciplinary approach to examine the role of these proteins in determining the composition, shape, and stiffness of the PFs and how these proteins impact motility by using the spirochete Brachyspira (formerly Treponema, Serpulina) hyodysenteriae as a genetic model. A series of double mutants lacking combinations of these PF proteins was constructed and analyzed. The results show the following. First, the diameters of PFs are primarily determined by the sheath protein FlaA, and that FlaA can form a sheath in the absence of an intact PF core. Although the sheath is important to the PF structure and motility, it is not essential. Second, the three core proteins play unequal roles in determining PF structure and swimming speed. The functions of the core proteins FlaB1 and FlaB2 overlap such that either one of these proteins is essential for the spirochete to maintain the intact PF structure and for cell motility. Finally, linear elasticity theory indicates that flagellar stiffness directly affects the spirochete's swimming speed.  相似文献   

5.
Spirochete periplasmic flagella (PFs), including those from Brachyspira (Serpulina), Spirochaeta, Treponema, and Leptospira spp., have a unique structure. In most spirochete species, the periplasmic flagellar filaments consist of a core of at least three proteins (FlaB1, FlaB2, and FlaB3) and a sheath protein (FlaA). Each of these proteins is encoded by a separate gene. Using Brachyspira hyodysenteriae as a model system for analyzing PF function by allelic exchange mutagenesis, we analyzed purified PFs from previously constructed flaA::cat, flaA::kan, and flaB1::kan mutants and newly constructed flaB2::cat and flaB3::cat mutants. We investigated whether any of these mutants had a loss of motility and altered PF structure. As formerly found with flaA::cat, flaA::kan, and flaB1::kan mutants, flaB2::cat and flaB3::cat mutants were still motile, but all were less motile than the wild-type strain, using a swarm-plate assay. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis indicated that each mutation resulted in the specific loss of the cognate gene product in the assembled purified PFs. Consistent with these results, Northern blot analysis indicated that each flagellar filament gene was monocistronic. In contrast to previous results that analyzed PFs attached to disrupted cells, purified PFs from a flaA::cat mutant were significantly thinner (19.6 nm) than those of the wild-type strain and flaB1::kan, flaB2::cat, and flaB3::cat mutants (24 to 25 nm). These results provide supportive genetic evidence that FlaA forms a sheath around the FlaB core. Using high-magnification dark-field microscopy, we also found that flaA::cat and flaA::kan mutants produced PFs with a smaller helix pitch and helix diameter compared to the wild-type strain and flaB mutants. These results indicate that the interaction of FlaA with the FlaB core impacts periplasmic flagellar helical morphology.  相似文献   

6.
7.
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.  相似文献   

8.
9.
B M Jiang  L J Saif  S Y Kang    J H Kim 《Journal of virology》1990,64(7):3171-3178
Purified virions or radiolabeled lysates of infected MA104 cells were used to characterize the structural and nonstructural polypeptides of a porcine group C rotavirus. At least six structural proteins were identified from purified group C rotavirus by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Of these, two (37,000- and 33,000-molecular-weight polypeptides) were associated with the outer shell, as demonstrated by the ability of EDTA to remove them from the purified virion. The other four polypeptides (molecular weights, 125,000, 93,000, 74,000, and 41,000) were located in the inner shell. The structural or nonstructural nature of a 25,000-molecular-weight protein identified in our studies was unclear. Glycosylation inhibition studies with tunicamycin in infected cells demonstrated that the 37,000- and 25,000-molecular-weight proteins were glycosylated and contained mannose-rich oligosaccharides identified by radiolabeling of the infected cells with [3H]mannose. The 37,000-molecular-weight outer shell glycoprotein was shown by pulse-chase experiments to be posttranslationally processed. The kinetics of viral polypeptide synthesis in infected cells were also studied, and maximal synthesis occurred at 6 to 9 h postinfection. The 41,000-molecular-weight inner capsid polypeptide was the most abundant and was the subunit structure of a 165,000-molecular-weight protein aggregate. Two polypeptides (molecular weights, 39,000 and 35,000) appeared to be nonstructural, as determined by comparison of the protein pattern of radiolabeled infected cell lysates with that of purified virions. Radioimmunoprecipitation was used to examine the serologic cross-reactions between the viral polypeptides of a group C rotavirus with those of a group A rotavirus. No serologic cross-reactivities were detected. The polypeptides of group A and C rotaviruses are compared and discussed.  相似文献   

10.
Recombination of plasmid DNAs and recombination of bacteriophage lambda red mutants in recB recC sbcA Escherichia coli mutants, in which the recE region is expressed, do not require recA. The recE gene is known to encode exonuclease VIII (exoVIII), which is an ATP-independent exonuclease involved in the RecE pathway of recombination. A 33,000-molecular-weight (MW) protein was observed to be coexpressed with both exoVIII and a truncated version of exoVIII, pRac3 exo, when they were overproduced under the control of strong promoters. We have purified this 33,000-MW protein (p33) and demonstrated by protein sequence analysis that it is encoded by the same coding sequence that encodes the C-terminal 33,000-MW portion of exoVIII. p33 is expressed independently of exoVIII but is probably translated from the same mRNA. p33 was found to bind to single-stranded DNA and also to promote the renaturation of complementary single-stranded DNA. It appears that p33 is functionally analogous to the bacteriophage lambda beta protein, which may explain why RecE pathway recombination does not require recA.  相似文献   

11.
Several studies have indicated that the central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components we have generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen, D2, is an allele of a previously identified mutant, pf16. Mutant cells have paralyzed flagella, and the C1 microtubule of the central apparatus is missing in isolated axonemes. We have cloned the wild-type PF16 gene and confirmed its identity by rescuing pf16 mutants upon transformation. The rescued pf16 cells were wild-type in motility and in axonemal ultrastructure. A full-length cDNA clone for PF16 was obtained and sequenced. Database searches using the predicted 566 amino acid sequence of PF16 indicate that the protein contains eight contiguous armadillo repeats. A number of proteins with diverse cellular functions also contain armadillo repeats including pendulin, Rch1, importin, SRP-1, and armadillo. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunofluorescence labeling of wild-type flagella indicates that the PF16 protein is localized along the length of the flagella while immunogold labeling further localizes the PF16 protein to a single microtubule of the central pair. Based on the localization results and the presence of the armadillo repeats in this protein, we suggest that the PF16 gene product is involved in protein-protein interactions important for C1 central microtubule stability and flagellar motility.  相似文献   

12.
The central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components, we generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen contains an allele of a previously identified mutation, pf20. Mutant cells have paralyzed flagella, and the entire central apparatus is missing in isolated axonemes. We have cloned the wild-type PF20 gene and confirmed its identity by rescuing the pf20 mutant phenotype upon transformation. Rescued transformants were wild type in motility and in axonemal ultrastructure. A cDNA clone containing a single, long open reading frame was obtained and sequenced. Database searches using the predicted 606-amino acid sequence of PF20 indicate that the protein contains five contiguous WD repeats. These repeats are found in a number of proteins with diverse cellular functions including beta-transducin and dynein intermediate chains. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunogold labeling of wild-type axonemes indicates that the PF20 protein is localized along the length of the C2 microtubule on the intermicrotubule bridges connecting the two central microtubules. We suggest that the PF20 gene product is a new member of the family of WD repeat proteins and is required for central microtubule assembly and/or stability and flagellar motility.  相似文献   

13.
Spirochetes are an evolutionary and structurally unique group of bacteria. Outermost is a membrane sheath (OS), and within this sheath are the protoplasmic cell cylinder (PC) and periplasmic flagella (PFs). The PFs are attached at each end of the PC and, depending on the species, may or may not overlap in the center of the cell. The precise location of the PFs within the spirochetal cells is unknown. The PFs could lie along the cell axis. Alternatively, the PFs could wrap around the PC in either a right- or a left-handed sense. To understand the factors that cause the PFs to influence cell shape and allow the cells to swim, we determined the precise location of the PFs in the Leptospiraceae (Leptonema illini) and Borrelia burgdorferi. Our approach was to use high-voltage electron microscopy and analyze the three-dimensional images obtained from thick sections of embedded cells. We found that a single PF in L. illini is located in a central channel 29 nm in diameter running along the helix axis of the right-handed PC. The presence of the PFs is associated with the end being hook shaped. The results obtained agree with the current model of Leptospiraceae motility. In B. burgdorferi, which forms a flattened wave, the relationship between the PFs and the PC is more complicated. A multistrand ridge 67 nm in diameter, which was shown to be composed of PFs by cross-sectional and mutant analysis, was found to extend along the entire length of the cell. We found that the PFs wrapped around the PC in a right-handed sense. However, the PFs formed a left-handed helix in space. The wavelength of the cell body and the helix pitch of the PFs were found to be identical (2.83 microm). The results obtained were used to propose a model of B. burgdorferi motility whereby backward-propagating waves, which gyrate counterclockwise as viewed from the back of the cell, are generated by the counterclockwise rotation of the internal PFs. Concomitant with this motion, the cell is believed to rotate clockwise about the body axis as shown for the Leptospiraceae.  相似文献   

14.
Motility mutants of Dictyostelium discoideum   总被引:4,自引:1,他引:3       下载免费PDF全文
We describe six motility mutants of Dictyostelium discoideum in this report. They were identified among a group of temperature-sensitive growth (Tsg) mutants that had been previously isolated using an enrichment for phagocytosis-defective cells. The Tsg mutants were screened for their ability to produce tracks on gold-coated cover slips, and several strains were found that were temperature-sensitive for migration in this assay. Analysis of spontaneous Tsg+ revertants of 10 migration-defective strains identified six strains that co-reverted the Tsg and track formation phenotypes. Characterization of these six strains indicated that they were defective at restrictive temperature in track formation, phagocytosis of bacteria, and pseudopodial and filopodial activity, while retaining normal rates of oxygen consumption and viability. Because they had lost this group of motile capabilities, these strains were designated motility mutants. The Tsg+ revertants of these mutants, which coordinately recovered all of the motile activities, were found at frequencies consistent with single genetic events. Analysis of the motility mutants and their revertants suggests a relationship between the motility mutations in some of these strains and genes affecting axenic growth.  相似文献   

15.
The periplasmic flagellum of Treponema phagedenis consists of the flagellar filament and hook-basal body. We report here a characterization of the hook gene and flagellar hook of T. phagedenis, and in the process of this analysis we found evidence that the hook polypeptide is likely cross-linked in situ. A T. phagedenis genomic library was screened with a Treponema pallidum antiserum, and the DNA segments from several positive plaques were subcloned and sequenced. DNA sequencing of two overlapping segments revealed a 1,389-nucleotide (nt) open reading frame (ORF) with a deduced amino acid sequence that was 36% identical to that of FlgE, the hook polypeptide of Salmonella typhimurium. This gene was designated T. phagedenis flgE. Beginning at 312 nt downstream from flgE was a partial ORF of 486 nt with a deduced amino acid sequence that was 33% identical to that of MotA of Bacillus subtilis, a polypeptide that enables flagellar rotation. Upstream of flgE, separated by 39 nt, was a partial (291-nt) ORF with a deduced amino acid sequence that was homologous to that of ORF8, a polypeptide of unknown function located in an operon encoding polypeptides involved in motility of B. subtilis. The T. phagedenis flgE gene was cloned into an Escherichia coli protein expression plasmid, and the purified recombinant protein was used to prepare a FlgE antiserum. Western blots (immunoblots) of whole-cell lysates probed with this antiserum revealed a 55-kDa polypeptide and a ladder of polypeptide bands with increasing molecular masses. T. phagedenis hooks were then isolated and purified, and electron microscopic analysis revealed that the morphology of the hooks resembled that in other bacteria. The hooks were slightly curved and had an average length of 69 +/- 8 nm and a diameter of 23 +/- 1 nm. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blots of purified hook preparations using the FlgE antiserum also revealed a polypeptide ladder, suggesting that the hooks are composed of a covalently cross-linked polypeptide.  相似文献   

16.
Nonmotile mutants of the gliding bacterium Cytophaga johnsonae were examined to identify proteins that might be involved in gliding motility. Wild-type and mutant cell proteins were solubilized and fractionated by using Triton X-114, and the proteins that partitioned into the aqueous phase or the detergent phase were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis for proteins that differed between wild-type and mutant cells. Seventeen proteins, ranging in size from 16 to 150 kilodaltons, were implicated by this technique as having some relationship to gliding and were designated Gld-1 through Gld-17. All Gld proteins behaved as integral membrane proteins, partitioning into the detergent phase. All 56 mutants examined exhibited changes in 1 or more of the Gld proteins, with the number of proteins altered in any mutant varying from 1 to 11. Several lines of evidence suggested that proteins Gld-12 through Gld-15 are glycoproteins. Analysis of banding patterns of detergent-fraction proteins of motile revertants supported the idea that the Gld proteins have a role in gliding motility.  相似文献   

17.
18.
A total of 59 cytocidal (cyt) mutants were isolated from adenovirus 2 (Ad2) and Ad5. In contrast to the small plaques and adenovirus type of cytopathic effects produced by wild-type cyt+ viruses, the cyt mutants produced large plaques, and the cytopathic effect was characterized by marked cellular destruction. cyt mutants were transformation defective in established rat 3Y1 cells. cyt+ revertants and cyt+ intragenic recombinants recovered fully the transforming ability of wild-type viruses. Thus, the cyt gene is an oncogene responsible for the transforming function of Ad2 and Ad5. Genetic mapping in which we used three Ad5 deletion mutants (dl312, dl313, and dl314) as reference deletions located the cyt gene between the 3' ends of the dl314 deletion (nucleotide 1,679) and the dl313 deletion (nucleotide 3,625) in region E1B. Restriction endonuclease mapping of these recombinants suggested that the cyt gene encodes the region E1B 19,000-molecular-weight (175R) polypeptide (nucleotides 1,711 to 2,236). This was confirmed by DNA sequencing of eight different cyt mutants. One of these mutants has a single missense mutant, two mutants have double missense mutations, and five mutants have nonsense mutations. Except for one mutant, these point mutations are not located in any other known region E1B gene. We conclude that the cyt gene codes for the E1B 19,000-molecular-weight (175R) polypeptide, that this polypeptide is required for morphological transformation of rat 3Y1 cells, and that simple amino acid substitutions in the protein can be sufficient to produce the cyt phenotype.  相似文献   

19.
The cytoskeleton of eukaryotic cells is comprised of a complex network of distinct but interconnected filament systems that function in cell division, cell motility, and subcellular trafficking of proteins and organelles. A gap in our understanding of this dynamic network is the identification of proteins that connect subsets of cytoskeletal structures. We previously discovered a family of cytoskeleton-associated proteins that includes GAS11, a candidate human tumor suppressor upregulated in growth-arrested cells, and trypanin, a component of the flagellar cytoskeleton of African trypanosomes. Although these proteins are intimately associated with the cytoskeleton, their function has yet to be determined. Here we use double-stranded RNA interference to block trypanin expression in Trypanosoma brucei, and demonstrate that this protein is required for directional cell motility. Trypanin(minus sign) mutants have an active flagellum, but are unable to coordinate flagellar beat. As a consequence, they spin and tumble uncontrollably, occasionally moving backward. Immunofluorescence experiments demonstrate that trypanin is located along the flagellum/flagellum attachment zone and electron microscopic analysis revealed that cytoskeletal connections between the flagellar apparatus and subpellicular cytoskeleton are destabilized in trypanin(minus sign) mutants. These results indicate that trypanin functions as a cytoskeletal linker protein and offer insights into the mechanisms of flagellum-based cell motility.  相似文献   

20.
Axial filament involvement in the motility of Leptospira interrogans.   总被引:10,自引:4,他引:6       下载免费PDF全文
Motility mutants of Leptospira interrogans serovar illini were isolated and analyzed by dark-field and electron microscopy. Mutants were obtained by screening for small colonies after nitrosoguanidine treatment. One class of mutants did not have hook- or spiral-shaped ends. In addition, the axial filaments from these mutants were not coiled. An analysis of revertants of two of the mutants in this class indicated that the mutations were pleiotropic with respect to motility, hook- and spiral-shaped ends, and axial filament coiling. We conclude that the axial filaments and the hook- and spiral-shaped ends are involved in L. interrogans motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号