首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ralstonia eutropha KT1, which degrades trichloroethylene, was injected into the aquifer after activation with toluene, and then the number of bacteria was monitored by in situ PCR targeting the phenol hydroxylase gene and by fluorescent in situ hybridization (FISH) targeting 16S rRNA. Before injection of the bacterial suspension, the total concentration of bacteria in the groundwater was approximately 3 × 105 cells/ml and the amount of Ralstonia and bacteria carrying the phenol hydroxylase gene as a percentage of total bacterial cells was less than 0.1%. The concentration of bacteria carrying the phenol hydroxylase gene detected by in situ PCR was approximately 3 × 107 cells/ml 1 h after injection, and the concentration of Ralstonia detected by FISH was similar. The number of bacteria detected by in situ PCR was similar to that detected by FISH 4 days after the start of the extraction of groundwater. On and after day 7, however, the number of bacterial cells detected by FISH was less than that detected by in situ PCR.  相似文献   

2.
Poly(3-hydroxybutyrate) (PHB), a representative polyhydroxyalkanoate (PHA), is a naturally occurring biopolyester stored as tiny, intracellular granules in microbial cells. In vivo, native PHB granules are amorphous, stabilized by a monolayer membrane and intra-granule water. When subjected to varying environmental conditions, the native granules may become partially crystalline. The in situ crystallinity of native PHB granules in Ralstonia eutropha cells suspended in aqueous solution was monitored with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). No sample preparation was required for measurement. A major measurement error could be caused by the evaporation of water. Therefore, the infrared absorption spectra should be taken after the initial settlement of cells, but before excessive dehydration. Background interference caused by water and non-PHB biomass was constant throughout the time course of measurement, regardless of granule crystallinity. The wavenumber 1184 cm−1 was found to be most sensitive to the in situ crystallinity of native PHB granules.  相似文献   

3.
【目的】在产聚-β-羟基丁酸酯(Poly-β-hydroxybutyrate,PHB)的罗氏真养菌(Ralstonia eutropha)H16突变株W50中建立完整的阿拉伯糖代谢途径,引入高亲和力阿拉伯糖转运蛋白,获得能利用L-阿拉伯糖的重组菌株,为获得能高效利用纤维质降解物并积累PHB的工程菌株奠定基础。【方法】利用PCR技术扩增R.eutropha H16的PHB合酶启动子P pha C1、大肠杆菌(Escherichia coli)W3110的阿拉伯糖代谢酶基因araBAD和高亲和力阿拉伯糖转运蛋白基因araFGH。将P pha C1、araBAD与表达载体pBBR1MCS连接,构建带有阿拉伯糖代谢酶基因的表达载体,转化R.eutropha W50得到重组菌株W50-1。利用双质粒和染色体重组两种方法将araFGH导入W50-1菌,分别得到重组菌株W50-2和W50-3。通过摇瓶发酵研究重组菌株W50-1、W50-2和W50-3的发酵特性。【结果】酶活分析结果表明,阿拉伯糖代谢酶基因实现了表达。重组菌株W50-1、W50-2和W50-3均能利用L-阿拉伯糖,并且表达了转运蛋白基因的重组菌利用L-阿拉伯糖的能力提高。摇瓶发酵结果表明,W50-1可以在含0.1 mol/L阿拉伯糖的发酵培养基中生长,但不能利用低浓度(0.01 mol/L)阿拉伯糖。W50-2、W50-3菌株能够利用低浓度阿拉伯糖生长,并且在含0.1 mol/L阿拉伯糖的培养基中,W50-3的生物量是W50-1的2.5倍,合成的PHB占菌体干重的38.6%。【结论】在R.eutropha W50中表达阿拉伯糖代谢酶基因及转运蛋白基因,可以使其高效利用L-阿拉伯糖生长并积累一定水平的PHB。  相似文献   

4.
An organism tentatively identified as Ralstonia eutropha was isolated from enrichment cultures containing tetrahydrofurfuryl alcohol (THFA) as the sole source of carbon and energy. The strain was able to tolerate up to 200 mM THFA in mineral salt medium. The degradation was initiated by an inducible ferricyanide-dependent alcohol dehydrogenase (ADH) which was detected in the soluble fraction of cell extracts. The enzyme catalyzed the oxidation of THFA to the corresponding tetrahydrofuran-2-carboxylic acid. Studies with n-pentanol as the substrate revealed that the corresponding aldehyde was released as a free intermediate. The enzyme was purified 211-fold to apparent homogeneity and could be identified as a quinohemoprotein containing one pyrroloquinoline quinone and one covalently bound heme c per monomer. It was a monomer of 73 kDa and had an isoelectric point of 9.1. A broad substrate spectrum was obtained for the enzyme, which converted different primary alcohols, starting from C2 compounds, secondary alcohols, diols, polyethylene glycol 6000, and aldehydes, including formaldehyde. A sequence identity of 65% with a quinohemoprotein ADH from Comamonas testosteroni was found by comparing 36 N-terminal amino acids. The ferricyanide-dependent ADH activity was induced during growth on different alcohols except ethanol. In addition to this activity, an NAD-dependent ADH was present depending on the alcohol used as the carbon source.  相似文献   

5.
6.
The ability of the Ralstonia eutropha cells to utilize formaldehyde (FA) as the only source of carbon and energy was studied in the kissiris-immobilized cell bioreactor (KICB) in batch-recirculation and continuous modes of operation. In batch-recirculation experiments, the test bacterium could tolerate concentrations of FA up to 1,400 mg/L at 30°C and aeration rate equal to 0.75 vvm (r S = 7.25 mg/L/h, q S = 0.019 gFA/gcell/h). However, further increase of initial FA concentration resulted in degradation reaction of FA to stop at 1,600 mg/L. Results of continuous mode experiments showed that the biodegradation performance of the KICB was dependent on both feed flow rate and inlet FA concentration parameters. The optimum feed flow rate which corresponded to the highest biodegradation rate (r S = 240.3 mg/L/h) was observed at Q = 18 mL/min when KICB did not operate under the external mass transfer limiting regime. Substrate inhibition kinetics (Edwards and Luong equations) were used to describe the experimental specific degradation rates data. According to the Luong model, the values of the maximum specific degradation rate (q max), half-saturation coefficient (K S), the maximum allowable FA concentration (S m), and the shape factor (n) were 0.178 gFA/gcell/h, 250.9 mg/L, 1,600 mg/L, and 1.86, respectively.  相似文献   

7.
Catabolism of 3-Nitrophenol by Ralstonia eutropha JMP 134   总被引:1,自引:0,他引:1       下载免费PDF全文
Ralstonia eutropha JMP 134 utilizes 3-nitrophenol as the sole source of nitrogen, carbon, and energy. The entire catabolic pathway of 3-nitrophenol is chromosomally encoded. An initial NADPH-dependent reduction of 3-nitrophenol was found in cell extracts of strain JMP 134. By use of a partially purified 3-nitrophenol nitroreductase from 3-nitrophenol-grown cells, 3-hydroxylaminophenol was identified as the initial reduction product. Resting cells of R. eutropha JMP 134 metabolized 3-nitrophenol to N-acetylaminohydroquinone under anaerobic conditions. With cell extracts, 3-hydroxylaminophenol was converted into aminohydroquinone. This enzyme-mediated transformation corresponds to the acid-catalyzed Bamberger rearrangement. Enzymatic conversion of the analogous hydroxylaminobenzene yields a mixture of 2- and 4-aminophenol.  相似文献   

8.
Polyhydroxybutyrate (PHB) was produced by Ralstonia eutropha DSM 11348 (formerly Alicaligenes eutrophus) in media containing 20–30 g l−1 casein peptone or casamino acids as sole sources of nitrogen. In fermentations using media based on casein peptone, permanent growth up to a cell dry mass of 65 g l−1 was observed. PHB accumulated in cells up to 60%–80% of dry weight. The lowest yields were found in media without any trace elements or with casamino acids added only. The residual cell dry masses were limited to 10–15 g l−1 and did not contain PHB. The highest productivity amounted to 1.2 g PHB l−1 h−1. The mean molecular mass of the biopolymer was determined as 750 kDa. The proportion of polyhydroxyvalerate was less than 0.2% in PHB. The bioprocess was scaled up to a 300-l plant. During a fermentation time of 39 h the cells accumulated PHB to 78% w/w. The productivity was 0.98 g PHB l−1 h1. Received: 8 July 1998 / Accepted: 26 August 1998  相似文献   

9.
Polyhydroxybutyrate (PHB) is the most studied among a wide variety of polyhydroxyalkanoates, bacterial biodegradable polymers known as potential substitutes for conventional plastics. This work aimed at evaluating the use of enzymes to recover and purify the PHB produced by Ralstonia eutropha DSM545. Screening experiments allowed the selection of trypsin, bromelain and lysozyme among six enzymes, based on their efficiency in lysing cells of a non-PHB producing R. eutropha strain. Then, process conditions for high efficiency in PHB purification from the DSM545 cells were searched for the enzymes previously selected. The best result was achieved with 2.0% of bromelain (enzyme mass per biomass), equivalent to 14.1 U ml(-1), at 50 degrees C and pH 9.0, resulting in 88.8% PHB purity. Aiming at improving the process efficiency and reducing the enzyme cost, experiments were carried out with pancreatin, leading to 90.0% polymer purity and an enzyme cost three times lower than the one obtained with bromelain. The molecular mass analysis of PHB showed no polymer degradation. Therefore, this work demonstrates the potential of using enzymes in order to recover and purify PHB and bacterial biopolymers in general.  相似文献   

10.
Biosynthesis of PHAs by Raltonia eutropha during the dual nutrient-limitation-zone was investigated with mixed organic acids as carbon sources and (NH4)2SO4 as nitrogen source. Two different methods of maintaining the dual-nutrient-limitation zone were adopted by feeding mixed acids and (NH4)2SO4 at determined rates into the fermentation cultures which were initially free of carbon sources (method A) or nitrogen sources (method B). The results indicate that, firstly, with the increase of the width of the dual-nutrient-limitation zone, the yield of short-chain-length-polyhydroxyalkanoates also increases and it suggests that most of the short-chain-length-polyhydroxyalkanoates were biosynthesized during the dual-nutrient-limitation zone. Secondly, in contrast with the dual-nutrient-limitation method of limiting the nitrogen source first (method B), the dual-nutrient-limitation method of limiting the carbon source first (method A) was more favourable for the production of short-chain-length-polyhydroxyalkanoates, and the maximum production of short-chain-length-polyhydroxyalkanoates of these two methods are 3.72 and 2.55 g/l, respectively.  相似文献   

11.
Aims:  The aims of this study were to optimize condensed corn solubles (CCS) as a medium for growth of Ralstonia eutropha and to determine the effects of individual volatile fatty acids (VFAs) on polyhydroxyalkanoate (PHA) production .
Methods and Results:  A CCS medium of concentration 240 g l−1 with a carbon : nitrogen ratio of 50 : 1 was developed as the optimal medium. Cultures were grown in 1-l aerated flasks at 250 rev min−1 at 30°C for 120 h. Comparable growth rates were observed in CCS vs a defined medium. At 48 h, VFAs were fed individually at different levels. Optimal levels of all the acids were determined to maximize PHA production. An overall comparison of the VFAs indicated that butyric and propionic acids provided the best results.
Conclusion:  An optimized CCS medium supported growth of R. eutropha . Butyric and propionic acids were the most efficient carbon sources to maximize PHA production when added at the 5 g l−1 level.
Significance and Impact of the Study:  The study shows that a byproduct of ethanol industry can be effectively used as a low cost medium for PHA production, thus partly reducing the cost of commercialization of biopolymers.  相似文献   

12.
To synthesize layered granules consisting of selected phases of polyhydroxybutyrate (PHB) homopolymer and PH(B-co-V) copolymer, Ralstonia eutropha was grown on fructose and limited quantities (1 g/l) of valeric acid. Exhaustion of the valerate resulted in a carbon source shift and a shift in the composition of polyhydroxyalkanoate (PHA) being synthesized within the cell. The synthesis rates were 0.030 g PH(B-co-V)/l per h and 0.033 g PHB/l per h, giving a copolymer composition of 48% HV. The valerate was exhausted at approximately 12 h at a rate of 0.0894 g/l per h after which only PHB was produced through the remaining 12 h at 0.033 g PHB/l per h from the remaining fructose, which was utilized at a constant rate of 0.0861 g/l per h throughout all 24 h of the experiment. Differential scanning calorimetry (DSC) of isolated granules showed two glass transitions, confirming the presence of two distinct polymer phases within the layered granules. Transmission electron microscopic images stained with RuO4 revealed a heavily stained copolymer core within a lighter stained PHB shell, confirming the expected morphology of granule composition. Thus, biosynthesis can be exploited for the control of domain sizes in layered granules, potentially providing metabolic control over the physical properties of the resultant polymer.  相似文献   

13.
The bacterium Ralstonia eutropha forms cytoplasmic granules of polyhydroxybutyrate that are a source of biodegradable thermoplastic. While much is known about the biochemistry of polyhydroxybutyrate production, the cell biology of granule formation and growth remains unclear. Previous studies have suggested that granules form either in the inner membrane, on a central scaffold, or in the cytoplasm. Here we used electron cryotomography to monitor granule genesis and development in 3 dimensions (3-D) in a near-native, "frozen-hydrated" state in intact Ralstonia eutropha cells. Neither nascent granules within the cell membrane nor scaffolds were seen. Instead, granules of all sizes resided toward the center of the cytoplasm along the length of the cell and exhibited a discontinuous surface layer more consistent with a partial protein coating than either a lipid mono- or bilayer. Putatively fusing granules were also seen, suggesting that small granules are continually generated and then grow and merge. Together, these observations support a model of biogenesis wherein granules form in the cytoplasm coated not by phospholipid but by protein. Previous thin-section electron microscopy (EM), fluorescence microscopy, and atomic force microscopy (AFM) results to the contrary may reflect both differences in nucleoid condensation and specimen preparation-induced artifacts.  相似文献   

14.
Self-assembling peptides have emerged as an attractive scaffold material for tissue engineering, yet the expense associated with solid phase chemical synthesis has limited their broad use. In addition, the fidelity of chemical synthesis constrains the length of polypeptides that can be produced homogeneously by this method. Template-derived biosynthesis by recombinant DNA technology may overcome both of these problems. However, recovery of polypeptides from recombinant protein expression systems typically involves multi-step purification schemes. In this study, we report an integrated approach to recombinantly produce and purify self-assembling peptides from the recently developed expression host Ralstonia eutropha. The purification is based on the specific affinity of carbohydrate binding modules (CBMs) to cellulose. In a first step, we identified CBMs that express well in R. eutropha by assembling a fusion library of green fluorescent protein (GFP) and CBMs and determining the fluorescence of cell-free extracts. Three GFP::CBM fusions were found to express at levels similar to GFP alone, of which two CBMs were able to mediate cellulose binding of the GFP::CBM fusion. These two CBMs were then fused to multiple repeats of the self-assembling peptide RAD16-I::E (N-RADARADARADARADAE-C). The fusion protein CBM::E::(RAD16-I::E)4 was expressed in R. eutropha and purified using the CBM's affinity for cellulose. Subsequent proteolytic cleavage with endoproteinase GluC liberated RAD16-I::E peptide monomers with similar properties to the chemically synthesized counterpart RAD16-I.  相似文献   

15.
16.
Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by bacteria for carbon and energy storage that also have commercial potential as bioplastics. One promising class of carbon feedstocks for industrial PHA production is plant oils, due to the high carbon content of these compounds. The bacterium Ralstonia eutropha accumulates high levels of PHA and can effectively utilize plant oil. Growth experiments that include plant oil, however, are difficult to conduct in a quantitative and reproducible manner due to the heterogeneity of the two-phase medium. In order to overcome this obstacle, a new culture method was developed in which palm oil was emulsified in growth medium using the glycoprotein gum arabic as the emulsifying agent. Gum arabic did not influence R. eutropha growth and could not be used as a nutrient source by the bacteria. R. eutropha was grown in the emulsified oil medium and PHA production was measured over time. Additionally, an extraction method was developed to monitor oil consumption. The new method described in this study allows quantitative, reproducible R. eutropha experiments to be performed with plant oils. The method may also prove useful for studying growth of different bacteria on plant oils and other hydrophobic carbon sources.  相似文献   

17.
The β-proteobacterium Ralstonia eutropha H16 utilizes fructose and gluconate as carbon sources for heterotrophic growth exclusively via the Entner–Doudoroff pathway with its key enzyme 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase. By deletion of the responsible gene eda, we constructed a KDPG aldolase-negative strain, which is disabled to supply pyruvate for energy metabolism from fructose or gluconate as sole carbon sources. To restore growth on fructose, an alternative pathway, similar to the fructose-6-phosphate shunt of heterofermentative bifidobacteria, was established. For this, the xfp gene from Bifidobacterium animalis, coding for a bifunctional xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (Xfp; Meile et al. in J Bacteriol 183:2929–2936, 2001), was expressed in R. eutropha H16 PHB4 Δeda. This Xfp catalyzes the phosphorolytic cleavage of fructose 6-phosphate to erythrose 4-phosphate and acetylphosphate as well as of xylulose 5-phosphate to glyceralaldehyde 3-phosphate and acetylphosphate. The recombinant strain showed phosphoketolase (PKT) activity on either substrate, and was able to use fructose as sole carbon source for growth, because PKT is the only enzyme that is missing in R. eutropha H16 to establish the artificial fructose-6-phosphate shunt. The Xfp-expressing strain R. eutropha H16 PHB4 Δeda (pBBR1MCS-3::xfp) should be applicable for a novel variant of a plasmid addiction system to stably maintain episomally encoded genetic information during fermentative production processes. Plasmid addiction systems are often used to ensure plasmid stability in many biotechnology relevant microorganisms and processes without the need to apply external selection pressure, like the addition of antibiotics. By episomal expression of xfp in a R. eutropha H16 mutant lacking KDPG aldolase activity and cultivation in mineral salt medium with fructose as sole carbon source, the growth of this bacterium was addicted to the constructed xfp harboring plasmid. This novel selection principle extends the applicability of R. eutropha H16 as production platform in biotechnological processes.  相似文献   

18.
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg2+, Ca2+, and Mn2+ were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.  相似文献   

19.
Cometabolism, as a complex phenomenon in microbial world, is a special mechanism for transformation of many compounds of environmental and toxicological significance. Several models have been proposed to describe the cometabolic transformations of non-growth substrates in the absence or presence of growth substrates. In this study, a model was proposed to simulate the degradation kinetics of phenol and ethanethiol (ET) by a pure culture of Ralstonia eutropha, including the effects of cell growth, endogenous cell decay, loss of transformation activity, competitive inhibition between growth and non-growth substrates, and self-inhibition of non-growth substrate. The model parameters were determined independently and were then used for evaluating the applicability of the model by comparing experimental data with model predictions. The model successfully predicted ET transformation and phenol utilization for a wide range of concentrations of ET (0 ~ 40 mg/L) and phenol (0 ~ 100 mg/L).  相似文献   

20.
The paper deals with the study of the synthesis of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymers by the bacterium Ralstonia eutropha B-5786 grown under different carbon nutrition conditions (growth on carbon dioxide, fructose, and CO2-valerate and fructose-valerate mixtures). The parameters to be analyzed included the yield of biomass, the yield, synthesis rate, and composition of copolymers, the activity of the key enzymes of polyhydroxyalkanoate (PHA) synthesis (beta-ketothiolase, acetoacetyl-CoA reductase, and PHA synthase), the maximum tolerable concentration of valerate to the bacterium, and the conditions that govern the incorporation of hydroxyvalerate to copolymers. This allowed the relationship between cultivation conditions and the proportion of monomers in the copolymers to be deduced. We were able to synthesize a range of 3HB/3HV copolymers and found that the thermal characteristics and the degree of crystallinity of these copolymers depend on the molar fraction of 3HV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号