首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. We investigated phylogenetic relationships of water striders (Hemiptera‐Heteroptera: Gerridae) from the three principal Holarctic genera, Aquarius Schellenberg, Limnoporus Stål and Gerris Fabricius with parsimony analyses of sixty‐six morphological characters and DNA sequences from mitochondrial (cytochrome c oxidase subunit I + II; large mitochondrial ribosomal subunit) and nuclear (elongation factor 1‐alpha) genes. The taxon sampling included all species of Aquarius and Limnoporus, and a dense, near complete, sample of Gerris species with representatives from all subgenera and species groups, and Gigantometra gigas (China) was selected as an outgroup species. A simultaneous analysis of all data sets gave eight equally parsimonious trees, and a strict consensus tree left only a few relationships within Gerris unresolved. While Limnoporus and Gerris each were resolved as monophyletic entities, Aquarius was found to be polyphyletic, because the Nearctic Aquarius remigis‐group, comprising A. remigis (Say), A. amplus (Drake and Harris), A. nyctalis (Drake and Hottes) and A. remigoides Gallant and Fairbairn, was placed as sister group to Gerris, while the Andean Aquarius chilensis (Berg) was sister group to all three genera. Remaining species of Aquarius comprised a sister group to the Gerris + the A. remigis‐group clade. Based on our phylogenetic reconstruction we discuss relationships within and among the three genera, reassess and diagnose species groups, and discuss zoogeographical relationships among all taxa.  相似文献   

2.
The cicada genus Psithyristria Stål (Hemiptera: Cicadidae), endemic to Luzon, the Philippines, is reviewed, and its higher taxonomic affiliations are determined using morphology and molecular phylogenetics. Seven new Psithyristria species, P. grandis, sp.n. , P. albiterminalis, sp.n. , P. incredibilis, sp.n. , P. paraspecularis, sp.n. , P. peculiaris, sp.n. , P. moderabilis, sp.n. and P. genesis, sp.n. , are described. A key to the 12 known species is provided. The molecular phylogenetic analyses of Psithyristria and putatively related taxa showed some unexpected generic relationships, leading to changes in higher taxonomic placement for a number of Asian cicada genera. Psithyristria falls within the tribe Cicadini Latreille, 1802, and the tribe Psithyristriini Distant, 1905 syn.n. is therefore synonymized with Cicadini. The subtribe Psithyristriina Distant, 1905 stat.n. is recognized within Cicadini and defined for the genera Psithyristria, transferred from Psithyristriini, and Basa Distant, Pomponia Stål and Semia Matsumura, transferred from Cicadina, synonymizing Pomponiina Kato, 1932 syn.n. with Psithyristriina. The Cicadini subtribe Leptopsaltriina Moulton, 1923 is redefined to include the genera Terpnosia Distant, Euterpnosia Matsumura, Leptosemia Matsumura, Neocicada Kato, Puranoides Moulton, Leptopsaltria Stål, Tanna Distant, Purana Distant, Formosemia Matsumura, Maua Distant, Nabalua Moulton, Taiwanosemia Matsumura, Gudaba Distant and Calcagninus Distant, synonymizing Terpnosiina Kato, 1932 syn.n. The tribe Cicadatrini Distant, 1905 is recognized and redefined to include the genera Cicadatra Kolenati, Psalmocharias Kirkaldy, Mogannia Amyot & Audinet‐Serville, Nipponosemia Kato and Emathia Stål, synonymizing Moganniini Distant, 1905 syn.n. The nine Psithyristria species included in the molecular analyses have an uncorrected mitochondrial genetic distance of 2–9%, and most species appear to be related through a single radiation event that occurred approximately 5–10 Ma. No phylogenetic structure was found in two unusually divergent characters, the forewing venation and the shape of the uncal lobes. Psithyristria is found in the northern Luzon mountains and is closely related to Semia of Taiwan and eastern China, Pomponia of east Asia and the Indonesian/Malaysian islands, and probably most closely to Basa of India. Psithyristria may be a cicadid example of a small number of Philippine organisms that trace their ancestry directly back to the temperate Asian mainland, rather than through the island chains to the south of the country.  相似文献   

3.
Vuji?, A., Ståhls, G., A?anski, J., Bartsch, H., Bygebjerg, R. & Stefanovi?, A. (2013). Systematics of Pipizini and taxonomy of European Pipiza Fallén: molecular and morphological evidence (Diptera, Syrphidae). —Zoologica Scripta, 42, 288–305. In the present work the monophyly and molecular phylogenetic relationships of the genera of tribe Pipizini (Syrphidae) were investigated based on mitochondrial cytochrome c oxidase subunit I (COI) and nuclear 28S rDNA sequences, and the relationships among species of genus Pipiza Fallén, 1810 based on mtDNA COI sequences. Molecular phylogenetic analyses of Pipizini supported Pipiza as monophyletic and as sister group to all other Pipizini, and resolved other Pipizini genera as monophyletic lineages except for genus Heringia Rondani, 1856. To recognize the distinctness and maintain the monophyly the genus Heringia was redefined, generic rank was assigned to Neocnemodon Goffe, 1944 stat. n., and the genus Claussenia Vuji? & Ståhls gen. n., type‐species Claussenia hispanica (Strobl, 1909), was described. A revision of the European Pipiza species, including a discussion of taxonomic characters and a morphological redefinition of all included species, is presented. One new species, Pipiza laurusi Vuji? & Ståhls sp. n. was described. The taxa Pipiza carbonaria Meigen, 1822; Pipiza fasciata, Meigen 1822; Pipiza lugubris (Fabricius, 1775), Pipiza noctiluca (Linneaues, 1758), Pipiza notata Meigen, 1822 were redefined. Lectotypes are designated for 17 taxa, and neotypes were designated for seven taxa. Fourteen new synonymies were proposed. Male genitalia were illustrated for all the species, and a key of the 12 European species for males and females was provided. Geometric morphometrics of wing landmarks and extended sampling of mtDNA COI sequences was employed to delimitate taxa of the P. noctiluca and P. lugubris complexes. Despite subtle morphological differences, wing geometric morphometrics variables of wing size and shape showed highly significant differences among species within P. noctiluca and P. lugubris complexes, which were supported by the molecular data.  相似文献   

4.
5.
The intrasubfamilial classification of Microdontinae Rondani (Diptera: Syrphidae) has been a challenge: until recently more than 300 out of more than 400 valid species names were classified in Microdon Meigen. We present phylogenetic analyses of molecular and morphological characters (both separate and combined) of Microdontinae. The morphological dataset contains 174 characters, scored for 189 taxa (9 outgroup), representing all 43 presently recognized genera and several subgenera and species groups. The molecular dataset, representing 90 ingroup species of 28 genera, comprises sequences of five partitions in total from the mitochondrial gene COI and the nuclear ribosomal genes 18S and 28S. We test the sister‐group relationship of Spheginobaccha with the other Microdontinae, attempt to elucidate phylogenetic relationships within the Microdontinae and discuss uncertainties in the classification of Microdontinae. Trees based on molecular characters alone are poorly resolved, but combined data are better resolved. Support for many deeper nodes is low, and placement of such nodes differs between parsimony and Bayesian analyses. However, Spheginobaccha is recovered as highly supported sister group in both. Both analyses agree on the early branching of Mixogaster, Schizoceratomyia, Afromicrodon and Paramicrodon. The taxonomical rank in relation to the other Syrphidae is discussed briefly. An additional analysis based on morphological characters only, including all 189 taxa, used implied weighting. A range of weighting strengths (k‐values) is applied, chosen such that values of character fit of the resulting trees are divided into regular intervals. Results of this analysis are used for discussing the phylogenetic relationships of genera unrepresented in the molecular dataset.  相似文献   

6.
Wing polymorphism and asymmetric male genitalia are intriguing morphological phenomena occurring in insects. Among Emesinae, or thread‐legged bugs, the tribe Metapterini Stål exhibits these two interesting morphological attributes. Nonetheless, evolutionary interpretations of these phenomena cannot be put forward because phylogenetic hypotheses for Emesinae are lacking. Thread‐legged bugs are easily recognized among assassin bugs due to their elongated and seemingly delicate body. The tribe Metapterini has 28 genera and approximately 280 described species. The only available phylogenetic hypothesis among Emesinae tribes was proposed by Wygodzinsky (1966), and it hypothesized Deliastini Villiers as the sister group of Metapterini, although this hypothesis has never been tested with cladistic approaches. Recent analyses using character sets of genitalia and prolegs suggest that Metapterini might not be monophyletic. In order to test these ideas, we compiled a morphological dataset of 138 characters that includes external morphological characters, detailed features of prolegs and genitalia of both sexes for Metapterini, which were analysed cladistically including 55 terminals, comprising 24 genera (85.7% of the generic diversity), 43 species of Metapterini and 12 outgroups. Metapterini was recovered as paraphyletic by the inclusion of Bergemesa Wygodzinsky, Palacus Dohrn and Stalemesa Wygodzinsky, all currently assigned to Deliastini. Gardena Dohrn (Emesini) was recovered as the sister group of Metapterini + Deliastini as suggested by Wygodzinsky (1966). Based on these results, we synonymize Deliastini syn. n. with Metapterini sensu n. and propose two new genera: Bacata Castro‐Huertas & Forero gen. n. , for three Andean species previously placed in Liaghinella Wygodzinsky, and Valkyriella Castro‐Huertas & Forero gen. n. for Ghilianella borgmeieri Wygodzinsky. Ancestral state reconstruction of wing polymorphism indicates that males and females were fully winged in the ancestor of Metapterini sensu n. with two independent evolutionary transitions to the apterous and brachypterous conditions. The analysis of the symmetry of the male genitalia shows an ancestor with symmetric male genitalia and two independent emergences of asymmetrical male genitalia in Metapterini.  相似文献   

7.
Osflintia manu, new genus, new species, of long-horned caddisfly (Leptoceridae: Triplectidinae: Grumichellini) is described and illustrated from southeastern Peru. The phylogeny of Grumichellini Morse (Leptoceridae: Triplectidinae) is revisited and hypotheses of homology of some morphological characters are reconsidered. The monophyly of the tribe is corroborated and the phylogenetic relationships of its included genera are inferred to be (Triplexa (Gracilipsodes ((Grumichella, Amazonatolica) (Atanatolica, Osflintia, n. gen.)))) from adult and larval characters. Diagnostic characters of the new genus include the following: reduced tibial spur formula (2, 2, 2), loss of forewing crossvein sc-r1, hind wing discoidal cell closed, hind wing fork IV present, pair of long setae on tergum IX of the male genitalia, and pair of processes on the apex of segment X.  相似文献   

8.
The composition of the family Acanaloniidae Amyot et Serville, 1843 is revised. According to the synapomorphies in the structure of the male and female genitalia, the family Acanaloniidae s. str. comprises 4 New World genera: Acanalonia Spinola, 1839, Batusa Melichar, 1901, Chlorochara Stål, 1869, and Philatis Stål, 1862. Galapagosana Distant, 1909 and Euthiscia Van Duzee, 1923 are placed in synonymy to Philatis Stål, 1862. The taxonomic position of the genera Aylaella Demir et Ozdikmen, 2009 (replacement name pro Perinetia Lallemand et Synave, 1954), Hemithiscia Schmidt, 1912, Paraphilatis Melichar, 1912, Parathiscia Melichar, 1901, Pseudothiscia Schmidt, 1912, Thinea Melichar, 1912, and Thiscia Stål, 1862 is unclear and needs further study.  相似文献   

9.
A phylogenetic analysis of the tribe Liparocephalini Fenyes is presented based on morphological and molecular characters. The data set comprised 50 adult morphological characters, partial COI (907 bp), COII (366 bp) and 12S rDNA (325–355 bp), and nearly complete sequences of 18S rDNA (1768–1902 bp) for 21 species. Eighteen species of liparocephaline beetles from all eight genera and three outgroups, are included. The sequences were analysed separately and simultaneously with morphological characters by direct optimization in the program POY4 and by partitioned Bayesian analysis for the combined data. The direct optimization (DO) tree for the combined data under equal weighting, which also shows a minimum incongruence length difference value, resulted in a monophyletic Liparocephalini with the following patterns of phylogenetic relationships (outgroup ((Baeostethus, Ianmoorea) (Paramblopusa ((Amblopusa, Halorhadinus) (Liparocephalus, Diaulota))))). A sensitivity analysis using 16 different parameter sets for the combined data shows the monophyly of the liparocephalines and all its genera under all parameter sets. Bayesian analysis resulted in topological differences in comparison with the DO tree under equal weighting only in the position of the genus Paramblopusa and clade (Amblopusa + Halorhadinus), which were reversed. Historical biogeography and the stepwise evolutionary colonization of intertidal habitat in the Liparocephalini are discussed. Based on the biogeographical analyses, we hypothesize that the ancestor of the Liparocephalini occurred along the Panthallassan Ocean, the direct antecedent of the Pacific Ocean, followed by repeated dispersals to the Nearctic from the Palearctic. We also hypothesize that ancestors of the Liparocephalini appear to have arisen in the littoral zone of beaches and then colonized rocky reef areas in the low tidal zone later through high‐ to mid‐tide zones. © The Willi Hennig Society 2009.  相似文献   

10.
Prior to this study, the genus Heraeus Stål, 1862 included 14 species, all of which are restricted to the Western Hemisphere. Three species are known from the Nearctic Region, nine from the Neotropical Region, and two mainly tropical elements are distributed in both regions. In this contribution, we consider Heraeus cincticornis Stål, 1874 a junior synonym of Heraeus elegans (Walker, 1873), select a lectotype for Heraeus coquilletti Barber, 1914, and neotype for Lygaeus triguttatus Guérin‐Méneville, 1857, and describe 28 new species. In addition, the two new genera, Baranowskiobius gen. nov., to include H. elegans (Baranowskiobius elegans comb. nov.) and two new species, and Paraheraeus gen. nov., to include Heraeus eximius Distant, 1882 (Paraheraeus eximius comb. nov.), are described. Previously described species and new taxa are (re)described and illustrated, including male genitalia. Scanning electron micrographs, general habitus photographs, and distribution maps are included for all species studied. A phylogenetic analysis comprising 46 terminal taxa and 50 morphological characters was performed, and five species groups were hypothesized, including the coquilletti, caliginosus, guttatus, illitus, and plebejus groups. All known species of Heraeus and the new genera are included in the phylogenetic analysis. The type species of the genera Myodocha Latreille, 1807, Orthaea Dallas, 1852, and Paisana Dellapé, 2008 are used as out‐groups.  相似文献   

11.
Abstract. The classification of the gelechioid family Elachistidae (Lepidoptera) is revised on the basis of a phylogenetic analysis. Pee-Wee analysis of 131 characters of adult and pupal morphology and larval mode of life, coded for seventy elachistid species, results in a classification with three recognized genera: Perittia, Stephensia and Elachista. Elachista is further divided into four subgenera. The phylogenetic relationships of the genera and subgenera are (Perittia (Stephensia ((E. sg. Dibrachia (E. sg. Hemiprosopa, E. sg. Aphelosetia)) (E. sg. Elachista)))). Twenty-four new generic synonyms and thirty-eight new generic combinations of species are proposed. A checklist is given for the species of Elachistidae in their revised generic combinations, including nine new synonymies. Due to secondary homonymy, Elachista dasycara nom. n. is proposed as a new name for Eurynome albella Chambers.  相似文献   

12.
This is the first genus‐level phylogeny of the subfamily Mynogleninae. It is based on 190 morphological characters scored for 44 taxa: 37 mynoglenine taxa (ingroup) representing 15 of the 17 known genera and seven outgroup taxa representing the subfamilies Stemonyphantinae, Linyphiinae (Linyphiini and Micronetini), and Erigoninae, and a representative of the family Pimoidae, the sister‐group to Linyphiidae. No fewer than 147 of the morphological characters used in this study are new and defined for this study, and come mainly from male and female genitalia. Parsimony analysis with equal weights resulted in three most parsimonious trees of length 871. The monophyly of the subfamily Mynogleninae and the genera Novafroneta, Parafroneta, Laminafroneta, Afroneta, Promynoglenes, Metamynoglenes, and Haplinis are supported, whereas Pseudafroneta is paraphyletic. The remaining seven mynoglenine genera are either monotypic or represented by only one taxon. Diagnoses are given for all genera included in the analysis. The evolution of morphological traits is discussed and we summarize the diversity and distribution patterns of the 124 known species of mynoglenines. The preferred topology suggests a single origin of mynoglenines in New Zealand with two dispersal events to Africa, and does not support Gondwana origin.  相似文献   

13.
The most extensive combined phylogenetic analyses of the subclass Marchantiidae yet undertaken was conducted on the basis of morphological and molecular data. The morphological data comprised 126 characters and 56 species. Taxonomic sampling included 35 ingroup species with all genera and orders of Marchantiidae sampled, and 21 outgroup species with two genera of Blasiidae (Marchantiopsida), 15 species of Jungermanniopsida (the three subclasses represented) and the three genera of Haplomitriopsida. Takakia ceratophylla (Bryophyta) was employed to root the trees. Character sampling involved 92 gametophytic and 34 sporophytic traits, supplemented with ten continuous characters. Molecular data included 11 molecular markers: one nuclear ribosomal (26S), three mitochondrial genes (nad1, nad5, rps3) and seven chloroplast regions (atpB, psbT‐psbH, rbcL, ITS, rpoC1, rps4, psbA). Searches were performed under extended implied weighting, weighting the character blocks against the average homoplasy. Clade stability was assessed across three additional weighting schemes (implied weighting corrected for missing entries, standard implied weighting and equal weighting) in three datasets (molecular, morphological and combined). The contribution from different biological phases regarding node recovery and diagnosis was evaluated. Our results agree with many of the previous studies but cast doubt on some relationships, mainly at the family and interfamily level. The combined analyses underlined the fact that, by combining data, taxonomic enhancements could be achieved regarding taxon delimitation and quality of diagnosis. Support values for many clades of previous molecular studies were improved by the addition of morphological data. The long‐held assumption that morphology may render spurious or low‐quality results in this taxonomic group is challenged. The morphological trends previously proposed are re‐evaluated in light of the new phylogenetic scheme.  相似文献   

14.
This paper presents the first phylogenetic analysis of Pachydeminae Reitter, 1902 ; one of the least known subfamilies of Melolonthidae, `leaf‐chafers' (Scarabaeoidea, Coleoptera). Some species of Pachydeminae have recently become agricultural pests in southern Spain. We analysed the phylogenetic relationships among 49 species belonging to 16 genera in the Palearctic region, based on a set of 63 morphological characters from the adult external morphology, wing anatomy, mouthparts and male and female genitalia. The last three sets of characters are described here for the first time. The phylogeny shows that the Palearctic Pachydeminae are monophyletic within the subfamily. Mouthparts and male and female genitalia provide the best synapomorphies for intergeneric relationships. In contrast, most of the external morphological characters used in the taxonomy of Pachydeminae are highly homoplastic. The phylogeny shows a basal split between the genera Hemictenius Reitter, 1897; Pachydema Castelnau, 1832, and the monospecific Peritryssus Reitter, 1918; and a second clade including the rest of genera. The remarkable Peritryssus is confirmed as a Pachydeminae, being the sister group to the monophyletic Hemictenius . Except for the position of P. rubripennis (Lucas, 1848) and P. zhora Normand, 1951, the phylogeny supports the monophyly of Pachydema but rejects the traditional division into species groups and the monophyly of the endemic Canarian species. In contrast, Tanyproctus Faldermann, 1835, must be rejected as polyphyletic. Otoclinius Brenske, 1896, is also probably polyphyletic (two new species synonymies), whereas Leptochristina Baraud and Branco, 1991 , is either mono‐ or paraphyletic. The two Mediterranean genera Ceramida Baraud, 1897, and Elaphocera Gené, 1836, form a monophyletic group, this clade being the best supported by the data set. Ceramida is clearly monophyletic, whereas Elaphocera is probably monophyletic except for E. barbara Rambur, 1843, which shares with Ceramida the character state for numerous mouthpart and genitalic characters. The phylogeny questions the generic status of the small and monospecific genera of Pachydeminae. The monotypic Alaia Petrovitz, 1980 , and Brenskiella Berg, 1898, are merged with Europtron Marseul, 1867, into one clade, whereas Atanyproctus Petrovitz, 1954, is grouped with some species of Tanyproctus , and the monotypic Pachydemocera Reitter, 1902 , is proposed as a junior synonym of Elaphocera .  相似文献   

15.
Phylogenetic analyses of 33 genera of Rubiaceae were performed using morphological and a few chemical characters. Parsimony analysis based on 29 characters resulted in eight equally parsimonious trees, with a consistency index of 0.40 and a retention index of 0.69. These results were compared to a phylogenetic analysis of the same genera based on chloroplast DNA restriction site data. There are discrepancies between the two analyses, but if we consider groupings reflected in the present classification there is much congruency. With the exception of four genera, all the genera are positioned in the same group of taxa in the two analyses. Clades of taxa representing three of the four subfamilies (~the Antirheoideae, ~the Rubioideae, and the ~Ixoroideae) are monophyletic, while the fourth subfamily Cinchonoideae is shown to be paraphyletic. Both analyses support a widened tribe Chiococceae, including the former subtribe Portlandiinae (Condamineeae). Furthermore, in both analyses the tribe Hamelieae is placed outside the subfamily Rubioideae where it is now housed. In search for the most plausible sister group to the Rubiaceae, the genus Cinchona (Rubiaceae) was analyzed together with 13 genera of the Loganiaceae, Nerium (Apocynaceae), and Exacum (Gentianaceae). Cornus (Comaceae), Olea (Oleaceae), and these two genera together were used as outgroups. The analysis, including 25 characters, 16 taxa, and with Cornus and Olea together as an outgroup, resulted in four equally parsimonious trees, with a consistency index of 0.53 and a retention index of 0.62. The non-Loganiaceae taxa Cinchona (Rubiaceae), Nerium (Apocynaceae), and Exacum (Gentianaceae) were all found to have their closest relatives within the Loganiaceae indicating that the Loganiaceae are paraphyletic and ought to be reclassified. As a result of the morphological data the most plausible sister group to the Rubiaceae is the tribe Gelsemieae of the Loganiaceae.  相似文献   

16.
The taxonomy of Lomechusini Fleming has a complex history. Recent studies have shown that this group is polyphyletic; however, little is known about the evolutionary interrelationships among its constituent genera. The goals of the present study are to infer the phylogenetic relationships of Falagonia Sharp and closely related genera; to define the boundaries of those genera based on synapomorphic characters; and to explore the evolution of myrmecophily within the lineage. The phylogenetic analyses are based exclusively on morphological characters of adults. A total of 36 operational taxonomic units were used for the analysis. The best trees were selected based on maximum parsimony and Bayesian inference. During the parsimony reconstruction, different weighting strategies were used to recover the most robust phylogenetic hypothesis. Although minor differences were observed in the results of the different analyses, the topologies were consistent throughout. Several groups of genera proposed by Seevers (1965), such as the ‘Tetradonia’ and ‘Ecitopora’ groups, were not recovered. Thus, these may represent nonmonophyletic groups that were based on nonsynapomorphic diagnostic characters. Our analyses consistently recovered the genera Asheidium Santiago‐Jiménez, Delgadoidium Santiago‐Jiménez, Falagonia, Newtonidium Santiago‐Jiménez, Pseudofalagonia Santiago‐Jiménez, Sharpidium Santiago‐Jiménez, Tetradonia Wasmann and Thayeridium Santiago‐Jiménez, forming a monophyletic group that we have called the ‘Asheidium complex’. Falagonia mexicana Sharp shows seven autapomorphies, none of which were used to establish the genus. Based on the phylogenetic results, myrmecophily has evolved independently at least three times within the lineage. This study, based on morphological characters, is one of the first approaches towards gaining an understanding of the phylogenetic relationships within the polyphyletic tribe Lomechusini.  相似文献   

17.
The melyrid lineage of beetles form a distinct group of the superfamily Cleroidea with a high level of soft‐bodiedness. Here we present the first molecular phylogenetic analysis of this group. The data matrix included partial sequences of the small and large subunits of rRNA, the mitochondrial large subunit rRNA, and cytochrome oxidase subunit I of 67 melyrid and eight outgroup taxa. The concatenated sequences were analysed using maximum‐parsimony (MP), maximum‐likelihood (ML) and Bayesian analysis (BA) approach. The results strongly supported the monophyly of the melyrid lineage splitting into six major clades: Rhadalidae, Mauroniscidae, Prionoceridae, Melyridae sensu stricto, Dasytidae and Malachiidae. The rhadalids were placed in the most basal position, followed by mauroniscids and prionocerids. Three terminal lineages—the true melyrids, dasytids, and malachiids—are well supported by all analyses, but their mutual relationships remain uncertain as MP analysis proposed alternative topologies to that of the ML and BA trees, with often low node support in the latter two methods. The monophyly of the subfamily Danacaeinae (Dasytidae) with respect to the danacaeine genera of the southern hemisphere (Hylodanacaea, Listrocerus, Amecocerus) was challenged as they were found to be polyphyletic. Similarly, the monophyly of Attalus was rejected by our analyses and shown to be polyphyletic. Based on the preferred phylogenetic hypothesis, the subfamilies Rhadalinae, Dasytinae and Malachiinae are elevated to family rank. © The Willi Hennig Society 2011.  相似文献   

18.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

19.
该研究基于对绣球属(Hydrangea L.)的大尺度取样,选取国内外61种绣球属和近缘属植物,分别基于核基因片段(ITS)和叶绿体基因片段(rbcL,trnL-F,atpB)重建了绣球属及其近缘种属的系统发育关系。结果表明:(1)核基因与叶绿体基因树之间在树形上没有明显的冲突,进而基于核基因和叶绿体基因联合数据重建了绣球属及其近缘种属的系统发育关系。(2)基于联合数据构建的系统树确认了2个大分支,并得到了果实顶端截平与否这一形态学证据的强力支持;每个大分枝又分为4个类群,共确定了8个类群。部分类群也得到了广义宏观形态性状的支持,如第1类群得到了叶形、花粉以及种子形态的支持。因此,该系统发育关系的重建对于全面理解绣球属及其近缘种属的演化关系具有重要的启发。  相似文献   

20.
小腹茧蜂亚科的雄外生殖器及族级单元系统发育的研究   总被引:2,自引:0,他引:2  
对分布在东洋区和古北区的小腹茧蜂亚科 (膜翅目: 茧蜂科)21个属的67个种及外群折脉茧蜂属 (膜翅目: 茧蜂科) 2个种的雄外生殖器的5个性状进行了比较研究。在形态学研究的基础上,通过选用头部、胸部和腹部(包括雌雄外生殖器的性状) 等34个性状,运用支序分析的方法探讨了分布在东洋区和古北区的小腹茧蜂亚科21个属以及它们所属的族间的系统发育关系,并对Mason (1981) 的分类系统进行了重新评价。雄外生殖器和支序分析基本上证实并恢复了由Mason (1981) 确定的2个主要分支,即绒茧蜂族Apantelini+小腹茧蜂族Microgastrini和拱茧蜂族Fornicini+盘绒茧蜂族Cotesiini+侧沟茧蜂族MicroplitinI。绒茧蜂族Apantelini、拱茧蜂族Fornicini和侧沟茧蜂族Microplitini为单系群也被支持,但小腹茧蜂族Microgastrini和盘绒茧蜂族Cotesiini是否为单系群尚难于在树形图中体现,而且族内各属间的分支关系有变动。因此,尽管Mason的族级分类单元有一些欠缺,但仍是可信、实用的,不同意Walker等 (1990) 认为不应再使用Mason分族系统的观点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号