首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By assessing the development of Y-linked autoimmune acceleration (Yaa) gene-induced systemic lupus erythematosus in C57BL/6 (B6) x (New Zealand Black (NZB) x B6.Yaa)F(1) backcross male mice, we mapped three major susceptibility loci derived from the NZB strain. These three quantitative trait loci (QTL) on NZB chromosomes 1, 7, and 13 differentially regulated three different autoimmune traits: anti-nuclear autoantibody production, gp70-anti-gp70 immune complex (gp70 IC) formation, and glomerulonephritis. Contributions to the disease traits were further confirmed by generating and analyzing three different B6.Yaa congenic mice, each carrying one individual NZB QTL. The chromosome 1 locus that overlapped with the previously identified Nba2 (NZB autoimmunity 2) locus regulated all three traits. A newly identified chromosome 7 locus, designated Nba5, selectively promoted anti-gp70 autoantibody production, hence the formation of gp70 IC and glomerulonephritis. B6.Yaa mice bearing the NZB chromosome 13 locus displayed increased serum gp70 production, but not gp70 IC formation and glomerulonephritis. This locus, called Sgp3 (serum gp70 production 3), selectively regulated the production of serum gp70, thereby contributing to the formation of nephritogenic gp70 IC and glomerulonephritis, in combination with Nba2 and Nba5 in NZB mice. Among these three loci, a major role of Nba2 was demonstrated, because B6.Yaa Nba2 congenic male mice developed the most severe disease. Finally, our analysis revealed the presence in B6 mice of an H2-linked QTL, which regulated autoantibody production. This locus had no apparent individual effect, but most likely modulated disease severity through interaction with NZB-derived susceptibility loci.  相似文献   

2.
Hybrids of New Zealand Black (NZB) and New Zealand White (NZW) mice spontaneously develop a disease similar to human systemic lupus erythematosus. MHC and non-MHC genes contribute to disease susceptibility in this murine model. Multiple studies have shown that the NZW H2z locus is strongly associated with the development of lupus-like disease in these mice. The susceptibility gene(s) within H2z is not known, but different lines of evidence have pointed to class II MHC genes, either H2-E or H2-A (Ez or Az in NZW). Recent studies from our laboratory showed that Ez does not supplant H2z in the contribution to lupus-like disease. In the present work we generated C57BL/10 (B10) mice transgenic for Aaz and Abz genes (designated B10.Az mice) and used a (B10.Az x NZB)F1 x NZB backcross to assess the contributions of Az genes to disease. A subset of backcross mice produced high levels of IgG autoantibodies and developed severe nephritis. However, no autoimmune phenotype was linked to the Az transgenes. Surprisingly, in the same backcross mice, inheritance of H2b from the nonautoimmune B10 strain was strongly linked with both autoantibody production and nephritis. Taken together with our previous Ez studies, the present work calls into question the importance of class II MHC genes for lupus susceptibility in this model and provides new insight into the role of MHC in lupus-like autoimmunity.  相似文献   

3.
The lupus-like disease that develops in hybrids of NZB and NZW mice is genetically complex, involving both MHC- and non-MHC-encoded genes. Studies in this model have indicated that the H2d/z MHC type, compared with H2d/d or H2z/z, is critical for disease development. C57BL/6 (B6) mice (H2b/b) congenic for NZB autoimmunity 2 (Nba2), a NZB-derived susceptibility locus on distal chromosome 1, produce autoantibodies to nuclear Ags, but do not develop kidney disease. Crossing B6.Nba2 to NZW results in H2b/z F1 offspring that develop severe lupus nephritis. Despite the importance of H2z in past studies, we found no enhancement of autoantibody production or nephritis in H2b/z vs H2b/b B6.Nba2 mice, and inheritance of H2z/z markedly suppressed autoantibody production. (B6.Nba2 x NZW)F1 mice, compared with MHC-matched B6.Nba2 mice, produced higher levels of IgG autoantibodies to chromatin, but not to dsDNA. Although progressive renal damage with proteinuria only occurred in F1 mice, kidneys of some B6.Nba2 mice showed similar extensive IgG and C3 deposition. We also studied male and female B6.Nba2 and F1 mice with different MHC combinations to determine whether increased susceptibility to lupus among females was also expressed within the context of the Nba2 locus. Regardless of MHC or the presence of NZW genes, females produced higher levels of antinuclear autoantibodies, and female F1 mice developed severe proteinuria with higher frequencies. Together, these studies help to clarify particular genetic and sex-specific influences on the pathogenesis of lupus nephritis.  相似文献   

4.
The F(1) hybrid of New Zealand Black (NZB) and New Zealand White (NZW) mice develop an autoimmune disease similar to human systemic lupus erythematosus. Because NZB and (NZB x NZW)F(1) mice manifest expansions of marginal zone (MZ) B and B1a cells, it has been postulated that these B cell abnormalities are central to the NZB genetic contribution to lupus. Our previous studies have shown that a major NZB contribution comes from the Nba2 locus on chromosome 1. C57BL/6 (B6) mice congenic for Nba2 produce antinuclear Abs, and (B6.Nba2 x NZW)F(1) mice develop elevated autoantibodies and nephritis similar to (NZB x NZW)F(1) mice. We studied B cell populations of B6.Nba2 mice to better understand the mechanism by which Nba2 leads to disease. The results showed evidence of B cell activation early in life, including increased levels of serum IgM, CD69(+) B cells, and spontaneous IgM production in culture. However, B6.Nba2 compared with B6 mice had a decreased percentage of MZ B cells in spleen, and no increase of B1a cells in the spleen or peritoneum. Expansions of these B cell subsets were also absent in (B6.Nba2 x NZW)F(1) mice. Among the strains studied, B cell expression of beta(1) integrin correlated with differences in MZ B cell development. These results show that expansions of MZ B and B1a cells are not necessary for the NZB contribution to lupus and argue against a major role for these subsets in disease pathogenesis. The data also provide additional insight into how Nba2 contributes to lupus.  相似文献   

5.
Both suppressive and promoting roles of NKT cells have been reported in the pathogenesis of systemic lupus erythematosus (SLE). Herein, we found that although New Zealand mice have normal frequencies of NKT cells, their in vitro potential to produce IL-4 and IFN-gamma in response to alpha-galactosylceramide was remarkably impaired in New Zealand Black (NZB) mice prone to mild SLE, while production was highly up-regulated in nonautoimmune New Zealand White (NZW) mice and at intermediate levels in (NZB x NZW)F(1) mice, which are prone to severe SLE. Because this aberration is evident in young mice before disease onset, genetic mechanisms are thought to be involved. Genome-wide quantitative trait locus analysis and association studies revealed that a locus linked to D11Mit14 on chromosome 11 may be involved in the difference in cytokine-producing potential between NZB and NZW NKT cells. Additionally, (NZB x NZW)F(1) x NZB backcross progeny with the NZW genotype for D11Mit14 showed significantly increased frequencies of age-associated SLE phenotypes, such as high serum levels of IgG, IgG anti-DNA Abs, and lupus nephritis. In coculture studies, alpha-galactosylceramide-stimulated NKT cells from NZW and (NZB x NZW)F(1) mice, but not from NZB mice, showed significantly enhanced Ig synthesis by B cells. These findings suggest that the D11Mit14-linked NZW locus may contribute to the development of SLE in (NZB x NZW)F(1) mice through a mechanism that up-regulates NKT cell function. Thus, this NZW allele may be a candidate of the NZW modifiers that act to promote (NZB x NZW)F(1) disease.  相似文献   

6.
Retroviral envelope glycoprotein gp70 is present in the sera of immunologically normal and autoimmune-prone strains of mice. However, only lupus-prone mice spontaneously develop gp70-anti-gp70 immune complexes (gp70IC), and these have been implicated in the development of nephritis. We investigated the genetic factors that affect the production of both free serum gp70 and gp70IC in the lupus-prone BXSB mouse strain by analyzing (BXSB x (C57BL/10 x BXSB)F(1))- and (C57BL/10 x (C57BL/10 x BXSB)F(1))-backcrossed male mice. Production of gp70 mapped to a single major locus located on chromosome 13 (Bxs6) with a maximum log likelihood of the odds of 36.7 (p = 1.6 x 10(-38)). The level of gp70IC was highly dependent on Bxs6-related gp70 production, and high titer autoantibody production only occurred when serum gp70 levels were greater than a threshold value of approximately 4.0 microg/ml. The subdivision of the (BXSB x (C57BL/10 x BXSB)F(1))-backcrossed mice into those homozygous or heterozygous for Bxs6 enabled a remarkable association to be observed between high levels of gp70IC and severe nephritis in the Bxs6 homozygote population. A further mapping study in these two subgroups identified a previously unrecognized interval associated with the production of autoantibodies.  相似文献   

7.
The BM12 mutation and autoantibodies to dsDNA in NZB.H-2bm12 mice   总被引:4,自引:0,他引:4  
Molecular and genetic tools have been used to shed light on the genes that contribute to susceptibility to murine lupus and the mechanisms that lead to immunopathology. The MHC genes and their products have been consistently shown to contribute toward the development of disease. To understand the contribution of MHC-class II genes, our laboratory had derived two inbred strains of mice, NZB.H-2bm12 and NZB.H-2b. These new colonies of mice were studied and compared in the 10th generation backcross; inbreeding was serially followed by H-2 typing, responses to beef/porcine insulin, and the presence of the B6 Ig allotype, IgG2ab. Of great interest is the finding that NZB.H-2bm12, in contrast to NZB.H-2b or NZB (H-2d), mice develop high titer autoantibodies to dsDNA. This result is unique because NZB (H-2d) mice, unliked NZB x NZW (NZB/W F1) or NZB x SWR (SNF1) hybrids do not develop autoantibodies to dsDNA, even after immunization. NZB mice, in contrast, are characterized only by autoantibodies to ssDNA. Our observation is also striking because the gene conversion that resulted in the I-A beta bm12 mutation occurred at amino acid residues 68, 71, and 72 of I-E beta b. Recently the contribution of NZW to accelerated autoimmunity in the NZB x NZW F1 hybrid has also been linked to H-2 and a single amino acid change at amino acid 72 of I-E beta. Thus, amino acid residue 72 may be a hot spot for disorders of immune regulation when superimposed on the appropriate genetic background. NZB mice expressing the I-Abm12 mutation will allow specific dissection of the requirements for autoantibody production to dsDNA uncomplicated by heterozygosity.  相似文献   

8.
Much of the pathology of systemic lupus erythematosus (SLE) is caused by deposition of immune complexes (ICs) into various tissues, including renal glomeruli. Because clearance of ICs depends largely on early complement component C1q, homozygous C1q deficiency is a strong genetic risk factor in SLE, although it is rare in SLE patients overall. In this work we addressed the issue of whether genetic polymorphisms affecting C1q levels may predispose to SLE, using the (NZB x NZW)F(1) model. C1q genes are composed of three genes, C1qa, C1qc, and C1qb, arranged in this order, and each gene consists of two exons separated by one intron. Sequence analysis of the C1q gene in New Zealand Black (NZB), New Zealand White (NZW), and BALB/c mice showed no polymorphisms in exons and introns of three genes. However, Southern blot analysis revealed unique insertion polymorphism of a total of approximately 3.5 kb in the C1qa upstream region of NZB mice. C1q levels in sera and culture supernatants of LPS-stimulated peritoneal macrophages and C1q messages in spleen cells were all lower in disease-free young NZB and (NZB x NZW)F(1) mice than in age-matched non-autoimmune NZW and BALB/c mice. Quantitative trait loci analysis using (NZB x NZW)F(1) x NZW backcrosses showed that NZB microsatellites in the vicinity of the C1q allele on chromosome 4 were significantly linked to low serum C1q levels and the development of nephritis. These data imply that not only C1q deficiency but also regulatory region polymorphisms down-regulating C1q levels may confer the risk for lupus nephritis by reducing IC clearance and thus promoting IC deposition in glomeruli.  相似文献   

9.
New Zealand Black (NZB) and New Zealand White (NZW) mice are genetically predisposed to a lupus-like autoimmune syndrome. To further define the loci linked to disease traits in NZB and NZW mice in the context of the BALB/c genetic background, linkage analyses were conducted in two crosses: (NZW x BALB/c.H2(z))F(1) x NZB and (NZB x BALB/c)F(2). Novel loci linked to autoantibody production and glomerulonephritis, present in both NZB and NZW mice, were identified on proximal chromosomes 12 and 4. The chromosome 12 locus showed the strongest linkage to anti-nuclear Ab production. Additionally, a number of other novel loci linked to lupus traits derived from both the New Zealand and non-autoimmune BALB/c genomes were identified. Furthermore, we confirm the linkage of disease to a number of previously described lupus-associated loci, demonstrating that they are relatively background independent. These data provide a number of additional candidate gene regions in murine lupus, and highlight the powerful effect the non-autoimmune background strain has in influencing the genetic loci linked to disease.  相似文献   

10.
The New Zealand Black (NZB) Lbw2 locus (lupus NZB x New Zealand White (NZW) 2 locus) was previously linked to mortality and glomerulonephritis, but not to IgG autoantibodies, suggesting that it played a role in a later disease stage. To define its contribution, (NZB x NZW)F1 hybrids (BWF1) containing two, one, or no copies of this locus were generated. Lack of the NZB Lbw2 indeed reduced mortality and glomerulonephritis, but not serum levels of total and anti-DNA IgG Abs. There were, however, significant reductions in the B cell response to LPS, total and anti-DNA IgM and IgG Ab-forming cells, IgM Ab levels, and glomerular Ig deposits. Furthermore, although serum IgG autoantibody levels correlated poorly with kidney IgG deposits, the number of spontaneous IgG Ab-forming cells had a significant correlation. Genome-wide mapping of IgM anti-chromatin levels identified only Lbw2, and analysis of subinterval congenics tentatively reduced Lbw2 to approximately 5 Mb. Because no known genes associated with B cell activation and lupus are in this interval, Lbw2 probably represents a novel B cell activation gene. These findings establish the importance of Lbw2 in the BWF1 hybrid and indicate that Lbw2, by enhancing B cell hyperactivity, promotes the early polyclonal activation of B cells and subsequent production of autoantibodies.  相似文献   

11.
By interval mapping of a backcross progeny between New Zealand White (NZW) and C57BL/6 (B6) mice bearing the Y chromosome-linked autoimmune acceleration gene Yaa, we previously identified a genetic locus on mid-chromosome 13, here designated as Sgp3, showing a major effect on the expression of a nephritogenic autoantigen, gp70. In this study, the NZW-derived Sgp3 region was transferred by backcross procedure and marker-assisted selection on the B6 background to produce three independent congenic strains B6.NZW-Sgp3/1, -Sgp3/2, and -Sgp3/3. We show that NZW homozygosity at a single 3 centiMorgans ( approximately 12 megabases (Mb)) interval between markers D13Mit142 and D13Mit254 mediates increased basal serum levels of gp70 in B6.NZW-Sgp3/1 and B6.NZW-Sgp3/2 mice and with a higher degree in males ( approximately 15 micro g/ml) than in females ( approximately 9 micro g/ml) as compared with B6 ( approximately 2 micro g/ml), revealing a gender effect. However, their gp70 levels are still lower than that of NZW mice ( approximately 60 micro g/ml). In addition, B6.NZW-Sgp3/1 and B6.NZW-Sgp3/2 mice showed a moderate 2- to 3-fold increase in serum gp70 in response to LPS, which contrasted with over a 10-fold increase in NZW mice. Although both B6.NZW-Sgp3/1 and B6.NZW-Sgp3/2 mice failed to produce significant amounts of gp70 anti-gp70 immune complexes, unexpectedly, aged B6.NZW-Sgp3/2 congenic males bearing the Yaa gene developed increased titers of IgG autoantibodies to DNA and chromatin. Our data indicate that Sgp3 is involved in a complex process of gp70 production under polygenic control and may provide a significant contribution to lupus susceptibility not only through up-regulation of gp70 autoantigen production but also predisposition to autoimmunity.  相似文献   

12.
Systemic lupus erythematosus (SLE) is inherited as a complex polygenic trait. (New Zealand Black (NZB) x New Zealand White (NZW)) F(1) hybrid mice develop symptoms that remarkably resemble human SLE, but (NZB x PL/J)F(1) hybrids do not develop lupus. Our study was conducted using (NZW x PL/J)F(1) x NZB (BWP) mice to determine the effects of the PL/J and the NZW genome on disease. Forty-five percent of BWP female mice had significant proteinuria and 25% died before 12 mo of age compared with (NZB x NZW)F(1) mice in which >90% developed severe renal disease and died before 12 mo. The analysis of BWP mice revealed a novel locus (chi(2) = 25.0; p < 1 x 10(-6); log of likelihood = 6.6 for mortality) designated Wbw1 on chromosome 2, which apparently plays an important role in the development of the disease. We also observed that both H-2 class II (the u haplotype) and TNF-alpha (TNF(z) allele) appear to contribute to the disease. A suggestive linkage to proteinuria and death was found for an NZW allele (designated Wbw2) telomeric to the H-2 locus. The NZW allele that overlaps with the previously described locus Sle1c at the telomeric part of chromosome 1 was associated with antinuclear autoantibody production in the present study. Furthermore, the previously identified Sle and Lbw susceptibility loci were associated with an increased incidence of disease. Thus, multiple NZW alleles including the Wbw1 allele discovered in this study contribute to disease induction, in conjunction with the NZB genome, and the PL/J genome appears to be protective.  相似文献   

13.
Genes from New Zealand Black and New Zealand White mice have been implicated in the development of a disease similar to human systemic lupus erythematosus. In an attempt to define the MHC class II genes involved in disease, we previously studied similarly designed backcrosses of New Zealand Black mice with C57BL/6 (B6) mice transgenic for Ez genes or with C57BL/10 (B10) mice transgenic for Az genes. Although the transgenes showed no effect on the development of autoantibody production or lupus nephritis in either backcross, surprisingly, there was greatly increased expression of these disease traits in the backcrosses involving B10 compared with B6 mice. These studies therefore implicated genetic contributions in B10 vs B6 backgrounds, despite their 98% identity. A genome-wide linkage analysis uncovered a B10 locus on mid-chromosome 13, which enhanced nephritis and was strongly linked with the production of pathogenic retroviral gp70-anti-gp70 immune complexes when contributed by B10, but not B6, mice. The subsequent identification of a single marker polymorphic between B10 and B6, along with the extreme genetic similarity between the two strains in this region, is likely to permit expedited identification of the lupus-susceptibility gene from this nonautoimmune strain.  相似文献   

14.
C O Jacob  F Hwang  G D Lewis  A M Stall 《Cytokine》1991,3(6):551-561
Recombinant tumor necrosis factor alpha (TNF-alpha) administration significantly delayed the development of lupuslike nephritis in the New Zealand black x New Zealand white (NZB x NZW)F1 and to a lesser extent in the MRL-lpr/lpr model systems. TNF-alpha treatment was effective when treatment was initiated at 2, 3, or 4 months of age but was ineffective if initiated as late as 6.5 months of age. Treatment of (NZB x NZW)F1 mice for 3 months was more effective than treatment continued for 6 months. Anti-TNF-alpha antibodies did not develop in these mice. Flow microfluorometry analysis showed no major effects on B, T, or monocyte cell population in cells from the peritoneum, spleen, lymph node, and thymus. A decrease in class II Ia expression on macrophages in the peritoneum of TNF-alpha-treated mice was noticed. A correlation between the level of TNF-alpha inducibility in vitro and the effect of TNF-alpha administration in vivo could be shown. Although a limited polymorphism could be shown by restriction fragment length polymorphism, using an amplified (AC)n microsatellite located in the 5' regulatory region of TNF-alpha, a much more extensive interallelic polymorphism was found. The AC microsatellite allele found in NZW mice was unique and different from other lupus strains and nonautoimmune strains. These results have possible implications to the pathogenesis of systemic lupus erythematosus.  相似文献   

15.
Lupus-prone, anti-DNA, heavy (H) chain "knock-in" mice were obtained by backcrossing C57BL/6 mice, targeted with a rearranged H chain from a VH11(S107)-encoded anti-DNA hybridoma (D42), onto the autoimmune genetic background of New Zealand Black/New Zealand White (NZB/NZW) F1 mice. The targeted female mice developed typical lupus serologic manifestations, with the appearance of transgenic IgM anti-DNA autoantibodies at a young age (2-3 mo) and high affinity, somatically mutated IgM and IgG anti-DNA Abs at a later age (6-7 mo). However, they did not develop clinical, lupus-associated glomerulonephritis and survived to at least 18 mo of age. L chain analysis of transgenic anti-DNA Abs derived from diseased NZB/NZW mouse hybridomas showed a very restricted repertoire of Vkappa utilization, different from that of nonautoimmune (C57BL/6 x BALB/c)F1 transgenic anti-DNA Abs. Strikingly, a single L chain was repetitively selected by most anti-DNA, transgenic NZB/NZW B cells to pair with the targeted H chain. This L chain had the same Vkappa-Jkappa rearrangement as that expressed by the original anti-DNA D42 hybridoma. These findings indicate that the kinetics of the autoimmune serologic manifestations are similar in wild-type and transgenic lupus-prone NZB/NZW F1 mice and suggest that the breakdown of immunologic tolerance in these mice is associated with the preferential expansion and activation of B cell clones expressing high affinity anti-DNA H/L receptor combinations.  相似文献   

16.
Recent studies indicate that IFN-alpha is involved in pathogenesis of systemic lupus erythematosus. However, direct proof that IFN-alpha is not only necessary, but also sufficient to induce lupus pathogenicity is lacking. In this study, we show that in vivo adenovector-mediated delivery of murine IFN-alpha results in preautoimmune (New Zealand Black (NZB) x New Zealand White (NZW))F(1), but not in normal, mice, in a rapid and severe disease with all characteristics of systemic lupus erythematosus. Anti-dsDNA Abs appeared as soon as day 10 after initiation of IFN-alpha treatment. Proteinuria and death caused by glomerulonephritis occurred in all treated mice within, respectively, approximately 9 and approximately 18 wk, at a time when all untreated (NZB x NZW)F(1) did not show any sign of disease. IFN-alpha in vivo induced an overexpression of B lymphocyte stimulator in circulation at similar levels in both the preautoimmune and the normal mouse strains. All effects elicited by IFN-alpha were dose dependent. (NZB x NZW)F(1) infused with purified murine IFN-alpha also showed acceleration of lupus. Thus, prolonged expression of IFN-alpha in vivo induces early lethal lupus in susceptible animals.  相似文献   

17.
In SLE and in the (NZB x NZW)F1 murine model of this disease, IgG autoantibodies are frequently produced to DNA and histones. In the present study, we define a linear epitope on histone H2B that is recognized by (NZB x NZW)F1 mice. IgG antibodies from anti-H2B positive (but not anti-H2B negative) mice bound strongly to a peptide containing the first 15 N-terminal amino acids, a region that is exposed in chromatin. Competitive inhibition studies showed that the binding of autoantibodies to H2B in ELISA as well as the binding to soluble H2B was substantially blocked by this peptide. Studies with smaller peptides mapped the epitope to residues 3-12. Individual mice recognized different residues within this region, and a sequence search did not reveal proteins other than H2B that could elicit this spectrum of antibodies. Interestingly, these autoantibody specificities were not a component of those induced in preautoimmune mice by immunization with H2B/RNA complexes or with H2B peptide 1-30 containing the autoantigenic sequence. These findings argue that recognition of a specific N-terminal region of self histone contributes to the anti-H2B autoantibody response in lupus. Autoreactive B cells with specificity for this sequence seem to develop only after the autoimmune process has been initiated.  相似文献   

18.
To investigate the possible effects of NZW genes on the class conversion of dsDNA-specific antibodies in NZB X NZW (B/W)F1 hybrids, we measured IgM, IgG1, and IgG2 dsDNA-specific antibodies, using the Crithidia luciliae kinetoplast immunofluorescence test, in NZB, NZW, B/W F1 hybrid, B/W F1 X NZB backcross, and B/W F1 X NZW backcross mice at 4, 7, and 10 months of age. The highest serum levels of IgM dsDNA-specific antibodies were observed in NZB mice at the ages tested; however, the amounts of IgG1 and IgG2 antibodies were scanty. In contrast, a large amount of both IgG1 and IgG2 dsDNA-specific antibodies was produced in B/W F1 hybrids, in which the serum IgM antibodies were lower than those observed in NZB mice. NZW mice were virtually negative for these antibodies. Progeny testing suggested that a combined effect of two unlinked dominant genes of the NZB strain determines the production of dsDNA-specific antibodies and that these genes only act to produce IgM antibodies. These traits are to a great degree modified by the NZW loci in B/W F1 hybrids, and a combined effect of two unlinked dominant genes leads to conversion of the class of the antibodies from IgM to IgG, which, in turn, increases the serum levels of dsDNA-specific antibodies. The F1 hybrid of C57BL/6 and NZW strains produced no dsDNA-specific antibodies, indicating that the relevant NZB predisposing genes are required for the NZW gene action. Linkage studies showed that one of such NZW genes is to some extent linked to the H-2 complex on chromosome 17, but not to Mup-1 (chromosome 4) or a coat color locus (chromosome 2). The appearance of IgG dsDNA-specific antibodies correlated well with the incidence of renal disease in B/W F1 X NZB backcross mice.  相似文献   

19.
Early in life, mice of four kinds [NZB, (NZB X NZW)F1, MRL/1, and male BXSB] with autoimmune disease spontaneously produced far more (greater than 3 S.D.) anti-hapten antibody-forming cells in spleens and greater concentrations of anti-hapten antibodies in sera than immunologically normal strains of mice (AKR, BALB/c, C57BL/6, DBA/1-J, DBA/2J, LG/J, 129, NZW, and female BXSB). This increased nonspecific antibody production by the abnormal animals' B cells correlated well with the spontaneous development of anti-single-stranded DNA antibodies, but not with serum levels of the viral envelope glycoprotein, gp70. These results suggest that the spontaneous formation of autoantibodies in mice whose immunologic disorder is manifested by a lupus-like disease may result from polyclonal activation of B cells by endogenous or exogenous B cell activators.  相似文献   

20.
CD1d-restricted NKT cells expressing invariant TCR alpha-chain rearrangements (iNKT cells) have been reported to be deficient in humans with a variety of autoimmune syndromes and in certain strains of autoimmune mice. In addition, injection of mice with alpha-galactosylceramide, a specific glycolipid agonist of iNKT cells, activates these T cells and ameliorates autoimmunity in several different disease models. Thus, deficiency and reduced function in iNKT cells are considered to be risk factors for the development of such diseases. In this study we report that the development of systemic lupus erythematosus in (New Zealand Black (NZB) x New Zealand White (NZW))F(1) mice was paradoxically associated with an expansion and activation of iNKT cells. Although young (NZB x NZW)F(1) mice had normal levels of iNKT cells, these expanded with age and became phenotypically and functionally hyperactive. Activation of iNKT cells in (NZB x NZW)F(1) mice in vivo or in vitro with alpha-galactosylceramide indicated that the immunoregulatory role of iNKT cells varied over time, revealing a marked increase in their potential to contribute to production of IFN-gamma with advancing age and disease progression. This evolution of iNKT cell function during the progression of autoimmunity may have important implications for the mechanism of disease in this model of systemic lupus erythematosus and for the development of therapies using iNKT cell agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号