首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tremmel D  Duarte M  Videira A  Tropschug M 《FEBS letters》2007,581(10):2036-2040
FKBP22 is a dimeric protein in the lumen of the endoplasmic reticulum, which exhibits a chaperone as well as a PPIase activity. It binds via its FK506 binding protein (FKBP) domain directly to the Hsp70 chaperone BiP that stimulates the chaperone activity of FKBP22. Here we demonstrate additionally the association of FKBP22 with the molecular chaperones and folding catalysts Grp170, alpha-subunit of glucosidase II, PDI, ERp38, and CyP23. These proteins are associated with FKBP22 in at least two protein complexes. Furthermore, we report an essential role for FKBP22 in the development of microconidiophores in Neurospora crassa.  相似文献   

2.
FK506-binding proteins (FKBPs) are cellular receptors for the immunosuppressant FK506 and rapamycin. They belong to the ubiquitous peptidyl-prolyl cis/trans isomerases (PPIases) family, which can catalyze the cis/trans isomerization of peptidyl-prolyl bond in peptides and proteins. In previous work, we revealed that mouse FKBP23 binds immunoglobulin binding protein (BiP), the major heat shock protein (Hsp) 70 chaperone in the ER, and the binding is interrelated with [Ca2+]. Furthermore, the binding can suppress the ATPase activity of BiP through the PPIase activity of FKBP23. In this work, FKBP23 is demonstrated to mediate functions of BiP by catalyzing the Pro117cis/trans conformational interconversion in the ATPase domain of BiP. This result may provide new understanding to the novel role of PPIase as a molecular switch.  相似文献   

3.
FKBPs define a subfamily of peptidyl-prolyl cis/trans isomerases (PPIases). PPIases are known to play roles in cellular protein folding, protein interactions and signal transduction. Here we describe NcFKBP22 from Neurospora crassa, a novel type of FKBP. NcFKBP22 is synthesized as a precursor protein with a cleavable signal sequence. In addition to a typical FKBP domain in the amino-terminal part mature NcFKBP22 contains a novel second domain which is unique amongst all known FKBPs. The amino acid composition of this carboxy-terminal domain is highly biased. Secondary structure predictions suggest that this domain may form an amphipathic α-helix. The carboxy-terminus of NcFKBP22 is –HNEL, a potential endoplasmic reticulum (ER) retention signal, suggesting that NcFKBP22 is a resident protein of the ER.  相似文献   

4.
Immunophilins are intracellular receptors of immunosuppressive drugs, carrying peptidyl-prolyl cis-trans isomerase activity, with a general role in protein folding but also involved in specific regulatory mechanisms. Four immunophilins of the FKBP-type (FK506-binding proteins) were identified in the genome of Neurospora crassa. Previously, FKBP22 has been located in the endoplasmic reticulum as part of chaperone/folding complexes and FKBP13 has been found to have a dual location in the cytoplasm and mitochondria. FKBP11 is apparently located exclusively in the cytoplasm. It is not expressed during vegetative development of the fungus although its expression can be induced with calcium and during sexual development. Overexpression of the respective gene appears to confer a growth advantage to the fungus in media containing some divalent ions. FKBP50 is a nuclear protein and its genetic inactivation leads to a temperature-sensitive phenotype. None of these proteins is, alone or in combination, essential for N. crassa, as demonstrated by the isolation of a mutant strain lacking all four FKBPs.  相似文献   

5.
Solscheid B  Tropschug M 《FEBS letters》2000,480(2-3):118-122
FKBPs define a subfamily of peptidyl-prolyl cis/trans isomerases (PPIases). PPIases are known to play roles in cellular protein folding, protein interactions and signal transduction. Here we describe NcFKBP22 from Neurospora crassa, a novel type of FKBP. NcFKBP22 is synthesized as a precursor protein with a cleavable signal sequence. In addition to a typical FKBP domain in the amino-terminal part mature NcFKBP22 contains a novel second domain which is unique amongst all known FKBPs. The amino acid composition of this carboxy-terminal domain is highly biased. Secondary structure predictions suggest that this domain may form an amphipathic -helix. The carboxy-terminus of NcFKBP22 is –HNEL, a potential endoplasmic reticulum (ER) retention signal, suggesting that NcFKBP22 is a resident protein of the ER.  相似文献   

6.
The FKBP protein family has prolyl isomerase activity and is related in function to cyclophilins. FKBPs are known to be involved in many biological processes including hormone signaling, plant growth, and stress responses through a chaperone or an isomerization of proline residues during protein folding. The availability of complete peach genome sequences allowed the identification of 21 FKBP genes by HMMER and BLAST analyses. Scaffold locations of these FKBP genes in the peach genome were determined and the protein domain and motif organization of peach FKBPs were analyzed. The phylogenetic relationships between peach FKBPs were also assessed. The expression profiles of peach FKBP gene results revealed that most peach FKBPs were expressed in all tissues, while a few peach FKBPs were specifically expressed in some of the tissues. This data could contribute to better understanding of the complex regulation of the peach FKBP gene family, and also provide valuable information for further research in peach functional genomics.  相似文献   

7.
The FK506‐binding protein (FKBP) family consists of proteins with a variety of protein–protein interaction domains and versatile cellular functions. It is assumed that all members are peptidyl‐prolyl cis–trans isomerases with the enzymatic function attributed to the FKBP domain. Six members of this family localize to the mammalian endoplasmic reticulum (ER). Four of them, FKBP22 (encoded by the FKBP14 gene), FKBP23 (FKBP7), FKBP60 (FKBP9), and FKBP65 (FKBP10), are unique among all FKBPs as they contain the EF‐hand motifs. Little is known about the biological roles of these proteins, but emerging genetics studies are attracting great interest to the ER resident FKBPs, as mutations in genes encoding FKBP10 and FKBP14 were shown to cause a variety of matrix disorders. Although the structural organization of the FKBP‐type domain as well as of the EF‐hand motif has been known for a while, it is difficult to conclude how these structures are combined and how it affects the protein functionality. We have determined a unique 1.9 Å resolution crystal structure for human FKBP22, which can serve as a prototype for other EF hand‐containing FKBPs. The EF‐hand motifs of two FKBP22 molecules form a dimeric complex with an elongated and predominantly hydrophobic cavity that can potentially be occupied by an aliphatic ligand. The FKBP‐type domains are separated by a cleft and their putative active sites can catalyze isomerazation of two bonds within a polypeptide chain in extended conformation. These structural results are of prime interest for understanding biological functions of ER resident FKBPs containing EF‐hand motifs.  相似文献   

8.
Suzuki Y  Win OY  Koga Y  Takano K  Kanaya S 《FEBS letters》2005,579(25):5781-5784
SIB1 FKBP22 is a homodimer, with each subunit consisting of the C-terminal catalytic domain and N-terminal dimerization domain. This protein exhibits peptidyl prolyl cis-trans isomerase activity for both peptide and protein substrates. However, truncation of the N-terminal domain greatly reduces the activity only for a protein substrate. Using surface plasmon resonance, we showed that SIB1 FKBP22 loses the binding ability to a folding intermediate of protein upon truncation of the N-terminal domain but does not lose it upon truncation of the C-terminal domain. We propose that the binding site of SIB1 FKBP22 to a protein substrate of PPIase is located at the N-terminal domain.  相似文献   

9.
FKBP23 was found in mouse endoplasmic reticulum (ER) in 1998. It consists of an N-terminal peptidyl-prolyl cis/trans isomerase (PPIase) domain and a C-terminal domain with Ca2+ binding sites. Previously, we reported that FKBP23 specifically binds to BiP, the main protein of the molecular chaperone Hsp70 in ER lumen, and the binding is interrelated with the Ca2+ concentration. In this work we have found the existence of the complex FKBP23/BiP by separation of an ER extract using gel filtration chromatography (GFC), and that the existence of this complex is Ca2+-interrelated. This result further verified the Ca2+-interrelated binding of these two proteins in vivo.  相似文献   

10.
Peptidyl-prolyl cis-trans-isomerases (PPIases) are enzymes that can cis-trans-isomerize a Xaa-Pro peptide bond. Three families of PPIases are known: cyclophilins, FKBPs, and parvulins. The physiological functions of the PPIases are only poorly understood. In previous work, we reported that the mouse FK506-binding protein 23 (mFKBP23), which comprises an N-terminal PPIase domain and a C-terminal domain with Ca(2+)-binding sites, binds to mBiP in the endoplasmic reticulum (ER) and this binding is affected by the Ca(2+) concentration. In this study, we demonstrate the ability of mFKBP23 to modulate the ATPase activity of BiP, and that the bound mFKBP23, but not the free mFKBP23, can suppress the ATPase activity of mBiP through its PPIase activity.  相似文献   

11.
BiP possesses ATP binding/hydrolysis activities that are thought to be essential for its ability to chaperone protein folding and assembly in the endoplasmic reticulum (ER). We have produced a series of point mutations in a hamster BiP clone that inhibit ATPase activity and have generated a species-specific anti-BiP antibody to monitor the effects of mutant hamster BiP expression in COS monkey cells. The enzymatic inactivation of BiP did not interfere with its ability to bind to Ig heavy chains in vivo but did inhibit ATP-mediated release of heavy chains in vitro. Immunofluorescence staining and electron microscopy revealed vesiculation of the ER membranes in COS cells expressing BiP ATPase mutants. ER disruption was not observed when a "44K" fragment of BiP that did not include the protein binding domain was similarly mutated but was observed when the protein binding region of BiP was expressed without an ATP binding domain. This suggests that BiP binding to target proteins as an inactive chaperone is responsible for the ER disruption. This is the first report on the in vivo expression of mammalian BiP mutants and is demonstration that in vitro-identified ATPase mutants behave as dominant negative mutants when expressed in vivo.  相似文献   

12.
The immunoglobulin heavy chain binding protein (BiP) is an endoplasmic reticulum (ER) chaperone that facilitates the proper folding of newly synthesized secretory and transmembrane proteins. Here we report that BiP mRNA was expressed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in wild-type mice under basal conditions. Dual in situ hybridization in the SON and PVN demonstrated that BiP mRNA was expressed in almost all the neurons of arginine vasopressin (AVP), an antidiuretic hormone. BiP mRNA expression levels were increased in proportion to AVP mRNA expression in the SON and PVN under dehydration. These data suggest that BiP is involved in the homeostasis of ER function in the AVP neurons in the SON and PVN.  相似文献   

13.
The catalytic activity of human FKBP12 as a prolyl isomerase is high towards short peptides, but very low in proline-limited protein folding reactions. In contrast, the SlyD proteins, which are members of the FKBP family, are highly active as folding enzymes. They contain an extra "insert-in-flap" or IF domain near the prolyl isomerase active site. The excision of this domain did not affect the prolyl isomerase activity of SlyD from Escherichia coli towards short peptide substrates but abolished its catalytic activity in proline-limited protein folding reactions. The reciprocal insertion of the IF domain of SlyD into human FKBP12 increased its folding activity 200-fold and generated a folding catalyst that is more active than SlyD itself. The IF domain binds to refolding protein chains and thus functions as a chaperone module. A prolyl isomerase catalytic site and a separate chaperone site with an adapted affinity for refolding protein chains are the key elements for a productive coupling between the catalysis of prolyl isomerization and conformational folding in the enzymatic mechanisms of SlyD and other prolyl isomerases, such as trigger factor and FkpA.  相似文献   

14.
Plant innate immunity is mediated by pattern recognition receptors (PRRs) and intracellular NB-LRR (nucleotide-binding domain and leucine-rich repeat) proteins. Overexpression of the endoplasmic reticulum (ER) chaperone, luminal-binding protein 3 (BiP3) compromises resistance to Xanthomonas oryzae pv. oryzae (Xoo) mediated by the rice PRR XA21 [12]. Here we show that BiP3 overexpression also compromises resistance mediated by rice XA3, a PRR that provides broad-spectrum resistance to Xoo. In contrast, BiP3 overexpression has no effect on resistance mediated by rice Pi5, an NB-LRR protein that confers resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae). Our results suggest that rice BiP3 regulates membrane-resident PRR-mediated immunity.  相似文献   

15.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

16.
The FK506-binding proteins (FKBPs) are a unique group of chaperones found in a wide variety of organisms. They perform a number of cellular functions including protein folding, regulation of cytokines, transport of steroid receptor complexes, nucleic acid binding, histone assembly, and modulation of apoptosis. These functions are mediated by specific domains that adopt distinct tertiary conformations. Using the Threading/ASSEmbly/Refinement (TASSER) approach, tertiary structures were predicted for a total of 45 FKBPs in 23 species. These models were compared with previously characterized FKBP solution structures and the predicted structures were employed to identify groups of homologous proteins. The resulting classification may be utilized to infer functional roles of newly discovered FKBPs. The three-dimensional conformations revealed that this family may have undergone several modifications throughout evolution, including loss of N- and C-terminal regions, duplication of FKBP domains as well as insertions of entire functional motifs. Docking simulations suggest that additional sequence segments outside FKBP domains may modulate the binding affinity of FKBPs to immunosuppressive drugs. The docking models also indicate the presence of a helix-loop-helix (HLH) region within a subset of FKBPs, which may be responsible for the interaction between this group of proteins and nucleic acids.  相似文献   

17.
The FK506-binding proteins (FKBPs) are known both as the receptors for immunosuppressant drugs and as prolyl isomerase (PPIase) enzymes that catalyse rotation of prolyl bonds. FKBPs are characterised by the inclusion of at least one FK506-binding domain (FKBd), the receptor site for proline and the active site for PPIase catalysis. The FKBPs form large and diverse families in most organisms, with the largest FKBP families occurring in higher plants. Plant FKBPs are molecular chaperones that interact with specific protein partners to regulate a diversity of cellular processes. Recent studies have found that plant FKBPs operate in intricate and coordinated mechanisms for regulating stress response and development processes, and discoveries of new interaction partners expand their cellular influences to gene expression and photosynthetic adaptations. This review presents an examination of the molecular and structural features and functional roles of the higher plant FKBP family within the context of these recent findings, and discusses the significance of domain conservation and variation for the development of a diverse, versatile and complex chaperone family.  相似文献   

18.
The endoplasmic reticulum (ER) chaperone binding protein (BiP) binds exposed hydrophobic regions of misfolded proteins. Cycles of ATP hydrolysis and nucleotide exchange on the ATPase domain were shown to regulate the function of the ligand-binding domain in vitro. Here we show that ATPase mutants of BiP with defective ATP-hydrolysis (T46G) or ATP-binding (G235D) caused permanent association with a model ligand, but also interfered with the production of secretory, but not cytosolic, proteins in vivo. Furthermore, the negative effect of BiP(T46G) on secretory protein synthesis was rescued by increased levels of wild-type BiP, whereas the G235D mutation was dominant. Unexpectedly, expression of a mutant BiP with impaired ligand binding also interfered with secretory protein production. Although mutant BiP lacking its ATPase domain had no detrimental effect on ER function, expression of an isolated ATPase domain interfered with secretory protein synthesis. Interestingly, the inhibitory effect of the isolated ATPase was alleviated by the T46G mutation and aggravated by the G235D mutation. We propose that in addition to its role in ligand release, the ATPase domain can interact with other components of the protein translocation and folding machinery to influence secretory protein synthesis.  相似文献   

19.
PPIases catalyze the interconversion of cis and trans isomers of peptidyl–prolyl (Xaa–Pro) bonds in peptide and protein substrates. The PPIase family comprises three subfamilies, two of which interact with immunosuppressant drugs and are therefore termed immunophilins. One subgroup of the immunophilins are the FK506 binding proteins (FKBPs). FKBPs of a relative molecular mass higher than 40 000 also display chaperone activity and are part of the multichaperone complex that Hsp90 forms with substrate proteins. Their function in this chaperone complex is still enigmatic. To further characterize the function of FKBP52 we want to analyze constructs of FKBP52-fragments. Here we describe a fast and effective three-step purification procedure for a fragment of FKBP52 with a relative molecular mass of 48 000, termed FKBP52–123, consisting of affinity chromatography, anion-exchange column and gel-permeation chromatography. A yield of 1 mg pure protein per gram of cells was achieved.  相似文献   

20.
The FK506-binding protein (FKBP) family of immunophilins consists of proteins with a variety of protein–protein interaction domains and versatile cellular functions. Analysis of the functions of immunophilins has been the focus of studies in recent years and has led to the identification of various molecular pathways in which FKBPs play an active role. All FKBPs contain a domain with prolyl cis/trans isomerase (PPIase) activity. Binding of the immunosuppressant molecule FK506 to this domain inhibits their PPIase activity while mediating immune suppression through inhibition of calcineurin. The larger members, FKBP51 and FKBP52, interact with Hsp90 and exhibit chaperone activity that is shown to regulate steroid hormone signalling. From these studies it is clear that FKBP proteins are expressed ubiquitously but show relatively high levels of expression in the nervous system. Consistent with this expression, FKBPs have been implicated with both neuroprotection and neurodegeneration. This review will focus on recent studies involving FKBP immunophilins in Alzheimer’s-disease-related pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号