首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cytoplasmic pH (pHi) of human blood neutrophils was measured using trapped carboxyfluorescein derivatives. Cells were acid-loaded using propionate or by pretreatment with NH4+. Acid-loaded cells were found to regain near-normal pHi by means of a Na+-dependent process. A concomitant Na+ uptake was recorded as a change in cell volume. Both events were amiloride-sensitive, indicating involvement of a Na+/H+ antiport. Activation of Na+/H+ exchange was also observed with chemotactic factors. Studies of the pHi-dependence of the H+ extrusion rate indicate that chemotactic factors increase the [H+i] sensitivity of the antiport.  相似文献   

2.
The nature of Na+ fluxes in resting and in chemotactic factor-activated human neutrophils was investigated. In resting cells, ouabain-insensitive unidirectional 22Na+ in- and effluxes represented passive electrodiffusional fluxes through ion channels: they were nonsaturable and voltage-dependent (PNa = 4.3 X 10(-9) cm/s). Amiloride (1 mM) had little effect on resting 22Na+ influx (approximately 0.8 meq/liter X min), thereby suggesting a minor contribution of Na+/H+ exchange and a lack of amiloride-sensitive Na+ channels. When neutrophils were exposed to the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine (FMLP, 0.1 microM), 22Na+ influx was stimulated approximately 30-fold (initial rate approximately 22 meq/liter X min). The FMLP-induced 22Na+ influx was saturable with respect to external Na+ (Km 26-35 mM, Vmax approximately 28 meq/liter X min), was electroneutral, and could be competitively inhibited by amiloride (Ki 10.6 microM). From a resting value of approximately 30 meq/liter of cell water, internal Na+ in FMLP-stimulated cells rose exponentially to reach a concentration of approximately 60 meq/liter by 10-15 min. This uptake was blocked by amiloride. FMLP also stimulated the efflux of 22Na+ which followed a single exponential time course (rate coefficient approximately 0.16 min-1). The FMLP-induced 22Na+ fluxes were similar to those observed with 10 microM monensin, a known Na+/H+ exchanging ionophore. The data indicate that FMLP activates an otherwise quiescent, amiloride-sensitive Na+/H+ exchange. Furthermore, all of the FMLP-induced 22Na+ fluxes can be satisfactorily accounted for by transport through the exchanger, leaving little room for an appreciable increase in Na+ conductance.  相似文献   

3.
The apparent volume of neutrophils, as measured electronically with the Coulter counter, has been reported to increase upon treatment with chemotactic factors. The occurrence of a volume change was confirmed by forward angle light scattering and by isotopic measurements of intracellular water space in cells treated with 12-O-tetradecanoylphorbol 13, acetate (TPA) or formyl-methionyl-leucyl-phenylalanine (FMLP). Cell swelling was associated with an increase in the osmotic content of the cells, determined from Boyle-van't Hoff plots, and with an increase in Na+ content, measured by flame photometry. The volume change was inhibited by replacement of extracellular Na+ with K+ or N-methyl-D-glucamine+, or by addition of amiloride. Swelling was also inhibited by the 5-N-substituted analogs of amiloride, which are potent specific inhibitors of the Na+/H+ antiport. This pathway is activated in neutrophils by both TPA and FMLP. Activation of Na+/H+ exchange, determined as a Na+-dependent and amiloride-sensitive cytoplasmic alkalinization, was also found when neutrophils were treated with hypertonic solutions. The hypertonic activation of the antiport was similarly followed by cell swelling, detectable by electronic sizing. The results indicate that activation of Na+/H+ exchange can lead to significant cell swelling in neutrophils.  相似文献   

4.
The intracellular pH (pHi) changes resulting from chemotactic factor-induced activation of Na+/H+ exchange in isolated human neutrophils were characterized. Intracellular pH was measured from the equilibrium distribution of [14C]-5,5-dimethyloxazolidine-2,4-dione and from the fluorescence of 6-carboxyfluorescein. Exposure of cells to 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) in 140 mM Na+ medium at extracellular pH (pHo) 7.40 led to a rise in pHi along an exponential time course (rate coefficient approximately 0.55 min-1). By 10 min, a new steady-state pHi was reached (7.75-7.80) that was 0.55-0.60 units higher than the resting pHi of control cells (7.20-7.25). The initial rate of H+ efflux from the cells (approximately 15 meq/liter X min), calculated from the intrinsic intracellular buffering power of approximately 50 mM/pH, was comparable to the rate of net Na+ influx (approximately 17 meq/liter X min), an observation consistent with a 1:1 stoichiometry for Na+/H+ exchange. This counter-transport could be inhibited by amiloride (apparent Ki approximately 75 microM). When either the external ([Na+]o) or internal Na ([Na+]i) concentrations, pHo, or pHi were varied independently, the new steady-state [Na+]i and pHi values in FMLP-stimulated cells were those corresponding to a chemical equilibrium distribution of Na+ and H+ across the cell membrane. By analogy to other activated cells, these results indicate that an alkalinization of pHi in human neutrophils is mediated by a chemotactic factor-induced exchange of internal H+ for external Na+.  相似文献   

5.
Thrombin-stimulated endothelial cells produce platelet-activating factor (PAF) in a dose-dependent manner: the activation of a Ca2+-dependent lyso-PAF acetyltransferase is the rate-limiting step in this process. The present study shows that acetyltransferase activation and consequent PAF production induced by thrombin in human endothelial cells are markedly inhibited in Na+-free media or after addition of the amiloride analog 5-(N-ethyl-N-isopropyl)amiloride, suggesting that a Na+/H+ antiport system is present in endothelial cells and plays a prominent role in thrombin-induced PAF synthesis. Accordingly, thrombin elicits a sustained alkalinization in 6-carboxyfluorescein-loaded endothelial cells, that is abolished in either Na+-free or 5-(N-ethyl-N-isopropyl)amiloride-containing medium. Extracellular Ca2+ influx induced by thrombin (as measured by quin2 and 45Ca methods) is completely blocked in the same experimental conditions, and monensin, a Na+/H+ ionophore mimicking the effects of the antiporter activation, evokes a dose-dependent PAF synthesis and a marked Ca2+ influx, which are abolished in Ca2+-free medium. An amiloride-inhibitable Na+/H+ exchanger is present in the membrane of human endothelial cells, its apparent Km for extracellular Na+ is 25 mM, and its activity is greatly enhanced when the cytoplasm is acidified. These results suggest that Na+/H+ exchange activation by thrombin and the resulting intracellular alkalinization play a direct role in the induction of Ca2+ influx and PAF synthesis in human endothelial cells.  相似文献   

6.
7.
According to recent observations ADP stimulates platelets via activation of Na+/H+ exchange which increases cytosolic pH (pHi). This event initiates formation of thromboxane A2 (via phospholipase A2) and, thereafter, inositol 1,4,5-trisphosphate (via phospholipase C) which is known to mobilize Ca2+ from intracellular storage sites. We investigated changes in pHi and cytosolic free Ca2+, [Ca2+]i, activating platelets with ADP and the thromboxane mimetic U 46619. We found that ADP (5 microM) increased pHi from 7.15 +/- 0.08 to 7.35 +/- 0.04 (n = 8) in 2'-7'-bis-(carboxyethyl)-5,6-carboxyfluorescein-loaded platelets, whereas thromboxane A2 formation was inhibited by indomethacin. ADP also induced a dose-dependent Ca2+ mobilization in fura2-loaded platelets which again was not affected by indomethacin. [Ca2+]i increased by 54 +/- 10 nM (n = 8) at 1 microM and by 170 +/- 40 nM (n = 7) at 10 microM ADP above the resting value of 76 +/- 12 nM (n = 47). Inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA) reduced ADP-induced Ca2+ mobilization by more than 65% in indomethacin-treated platelets. This inhibition could be completely overcome by artificially raising pHi using either NH4Cl or the Na+/H+ ionophore monensin. We found that U 46619 increased pHi by 0.18 +/- 0.05 at 0.1 microM and by 0.29 +/- 0.07 (n = 7) at 1.0 microM above the resting value via an EIPA-sensitive mechanism. In conflict with the proposed role of the Na+/H+ exchange we found that U 46619 raised [Ca2+]i via a mechanism that for more than 50% depended on intact Na+/H+ exchange. Again, artificially elevating pHi restored U 46619-induced Ca2+ mobilization despite the presence of EIPA. Thus, our data show that Na+/H+ exchange is a common step in platelet activation by prostaglandin endoperoxides/thromboxane A2 and ADP and enhances Ca2+ mobilization independently of phospholipase A2 activity.  相似文献   

8.
Na+/H+ exchanger (NHE) activity is exquisitely dependent on the intra- and extracellular concentrations of Na+ and H+. In addition, Cl- ions have been suggested to modulate NHE activity, but little is known about the underlying mechanism, and the Cl- sensitivity of the individual isoforms has not been established. To explore their Cl- sensitivity, types 1, 2, and 3 Na+/H+ exchangers (NHE1, NHE2, and NHE3) were heterologously expressed in antiport-deficient cells. Bilateral replacement of Cl- with nitrate or thiocyanate inhibited the activity of all isoforms. Cl- depletion did not affect cell volume or the cellular ATP content, which could have indirectly altered NHE activity. The number of plasmalemmal exchangers was unaffected by Cl- removal, implying that inhibition was due to a decrease in the intrinsic activity of individual exchangers. Analysis of truncated mutants of NHE1 revealed that the anion sensitivity resides, at least in part, in the COOH-terminal domain of the exchanger. Moreover, readdition of Cl- into the extracellular medium failed to restore normal transport, suggesting that intracellular Cl- is critical for activity. Thus interaction of intracellular Cl- with the COOH terminus of NHE1 or with an associated protein is essential for optimal activity.  相似文献   

9.
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+- dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.  相似文献   

10.
11.
The human leukemic cell line, HL-60, differentiates in response to tumor-promoting phorbol esters. Recently, we have reported that one of the first events evoked by phorbol esters in HL-60 cells is the stimulation of Na+-dependent H+ efflux. In efforts to determine whether stimulation of Na+/H+ exchange by phorbol esters is coupled to induction of cellular differentiation, we found that 1) amiloride, a frequently used inhibitor of Na+/H+ exchange, rapidly inhibits phorbol ester-stimulated protein phosphorylation in vivo and protein kinase C-mediated phosphorylation in vitro, both with potency similar to that with which amiloride inhibits Na+/H+ exchange; 2) an amiloride analog, dimethylamiloride, is a far more potent inhibitor of Na+/H+ exchange than is amiloride, while being no more potent than amiloride in inhibiting phorbol ester/protein kinase C-mediated phosphorylation; and 3) at concentrations sufficient to completely inhibit Na+/H+ exchange, amiloride blocked phorbol ester-induced adhesion of HL-60 cells (adhesion being a property indicative of the differentiated state), but dimethylamiloride (as well as ethylisopropylamiloride, another very potent amiloride analog) did not. Thus, dimethylamiloride represents a potential tool for distinguishing protein kinase C-coupled from Na+/H+ exchange-coupled events in phorbol ester-stimulated cells.  相似文献   

12.
A Na+/Ca2+ exchange mechanism has been recently described in human neutrophils that constitutes the principal pathway for Ca2+ influx into resting cells. The potential role of this system in regulating the respiratory burst in response to activation by the chemotactic tripeptide N-formyl-methionyl-leucyl-phenylalanine was explored. In the presence of 1 mM Ca2+, a variety of di- and trivalent cations suppressed the generation of O(-2) radicals in a series of decreasing efficacy: La3+ approximately Zn2+ much greater than Sr2+ approximately Cd2+ greater than Ba2+ greater than Co2+ greater than Ni2+ approximately Mg2+. This sequence is similar to their rank order of activity in inhibiting 45Ca2+ influx via Na+/Ca2+ counter-transport. Benzamil, phenamil, and 2',4'-dichlorobenzamil, analogues of amiloride which selectively block Na+/Ca2+ exchange in neutrophils, likewise suppressed the release of O(-2) with apparent Ki values of approximately 30 microM. The effect of the cations was competitive with Ca2+, while the interaction between the benzamil derivatives and Ca2+ appeared to be noncompetitive in nature. Both the divalent cations and benzamil also inhibited the rise in cytoplasmic Ca2+ as monitored by fura-2 fluorescence: these agents reduced peak cytosolic Ca2+ levels after N-formyl-methionyl-leucyl-phenylalanine stimulation to values seen in the absence of extracellular Ca2+. These results are compatible with the hypothesis that the influx of Ca2+ via Na+/Ca2+ exchange contributes to the transient elevation in intracellular free Ca2+. The polyvalent cations block the entry of critical Ca2+ ions by competing with Ca2+ for binding to the translocation site on the exchange carrier, while benzamil acts by lowering the maximal transport rate. These studies emphasize that Na+/Ca2+ exchange through its effects on cytoplasmic Ca2+ plays a major regulatory role in activation of the respiratory burst in chemotactic factor-stimulated neutrophils.  相似文献   

13.
Na+-Ca2+ exchange in human neutrophils   总被引:4,自引:0,他引:4  
  相似文献   

14.
We have found that thrombin-induced activation of protein kinase C (PKC) in platelets, measured by phosphorylation of the 47 kDa protein, is synergistically enhanced by the amiloride analogue ethylisopropylamiloride (EIA), a specific inhibitor of Na+/H+ exchange. This EIA effect was further synergistically enhanced by lowering intracellular pH (pHi) with either nigericin or sodium propionate, and reversed by raising pHi with monensin or ammonium chloride. The synergistic enhancement of thrombin-activated PKC by EIA plus nigericin was not observed when PKC was directly activated by phorbol esters. EIA and EIA plus nigericin caused a 3- to 6-fold increase in thrombin-induced diacylglycerol (DAG), but not phosphatidic acid (PA), production. EIA and nigericin also caused a marked increase in thrombin-induced breakdown and inhibition of resynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2). In summary, we have presented evidence that inhibition of Na+/H+ exchange causes primarily a H(+)-mediated interruption of the phosphoinositide cycle in activated platelets, including the accumulation of DAG associated with the enhancement of PKC activation, the inhibition of conversion of DAG to PA, and increased PIP2 breakdown. These data suggest a model in which Na+/H+ and pHi play an important regulatory role in permitting the phosphoinositide cycle to proceed in thrombin-activated platelets.  相似文献   

15.
Binding of ADP to platelets enhances the binding of fibrinogen to Gp IIb-IIIa, the specific platelet receptor for adhesive proteins. The linkage between ADP and fibrinogen binding is indirect since ADP does not bind to the same receptor as fibrinogen. We have recently proposed that a third component, once affected by ADP binding, induces a conformational transition of the fibrinogen receptor from the low to the high affinity state, which is responsible for platelet aggregation [De Cristofaro, R., Landolfi, R., Castagnola, M., De Candia, E., Di Cera, E., & Wyman, J. (1988) Proc. Natl. Acad. Sci. USA 85, 8473-8476]. In the present study we provide evidence that this component should be identified with the platelet Na+/H+ antiport. Inhibition of the antiport by pharmacological agents such as amiloride, or else by decreasing extracellular Na+, results in a marked decrease of fibrinogen binding to platelets.  相似文献   

16.
17.
The regulation of intracellular Na+ and pHi in human blood platelets is known to be controlled by the function of the Na+/H+ exchanger. The phosphorylation state of the Na+/H+ exchanger which determines the exchanger activity in human blood platelets is regulated by the activities of protein kinases and protein phosphatases. Observations in this study indicate that arginine vasopressin (AVP) that interacts with a V1 receptor, activates the Na+/H+ exchange in human blood platelets through a genistein-inhibited mechanism. The AVP-activated Na+/H+ exchange is probably not regulated by protein kinase C (PKC), since this activation is not inhibited by staurosporine. The multiple ways in which platelet Na+/H+ exchange can be modulated may indicate the critical role played by this exchanger in the homeostasis control of pHi in human blood platelets.  相似文献   

18.
19.
G Agam  A Argaman  A Livne 《FEBS letters》1989,244(1):231-236
Thrombin affects blood platelets by activation of Na+/H+ exchange and induction of aggregation, but the relationship between these effects is under debate. The present study attempts to clarify whether the activation of the exchanger activity is required for platelet aggregation. In apparent support of such a requirement, thrombin-induced aggregation is higher in Na+ medium than in N-methylglucamine+ medium and is inhibited by sphingosine, an inhibitor of protein kinase C known to regulate the Na+/H+ exchanger. However, the inhibition of aggregation by sphingosine occurs in both Na+-containing and Na+-free media, the aggregation is identical in Na+ and K+-containing media, and is not inhibited by 5-N-(3-aminophenyl)amiloride, at a concentration 10-fold higher than its Ki for platelet Na+/H+ exchange. Furthermore, at low concentration (0.005 U/ml) thrombin induces aggregation but does not activate the exchange. It is concluded that the activation of Na+/H+ exchange is not required for thrombin-induced platelet aggregation and that the apparent augmentation of aggregation by Na+ is due to an inhibitory effect of N-methylglucamine+.  相似文献   

20.
Na+/H+ exchange in the cyanobacterium Synechococcus 6311   总被引:9,自引:0,他引:9  
The cyanobacterium Synechococcus 6311 adapts to grow in 0.6 M NaCl by developing an efficient system for sodium extrusion. In the present investigation cells loaded with NaC1 were subjected to a large dilution. Changes in fluorescence quenching of acridine orange as a function of transmembrane Na+ gradients provide evidence that Na+/H+ exchange activity greatly enhanced in salt-adapted cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号