首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of endogenous peroxidase activity in the hamster submandibular gland was investigated cytochemically by light and electron microscopy using diaminobenzidine methods. After fixation of tissue with 2% paraformaldehyde--2.5% glutaraldehyde and incubation in a DAB reaction medium containing 0.01% H2O2, the peroxidase reaction product was localized in the nuclear envelope, the cisternae of the endoplasmic reticulum, secretory granules and the Golgi apparatus in both the acinar and granular duct cells of the submandibular gland. This is in contrast to earlier investigators who failed to detect peroxidase activity in acinar cells of the hamster submandibular gland and reported that peroxidase is localized only in the granular duct cells. The discrepancy may be caused by differences in experimental procedures. It is suggested that fixation of tissue with a high concentration of glutaral dehyde and incubation in a DAB reaction medium containing a high concentration of H2O2 inhibits the peroxidase activity of acinar cells in the hamster submandibular gland  相似文献   

2.
Summary Peroxidase activity has been localized to duct cells of the submandibular salivary gland of the hamster using a 3,3-diaminobenzidine (DAB)-H2O2 medium. In cryostat sections of glutaraldehyde-fixed tissue the enzyme activity is found in the proximal part of the duct system of the gland. In Epon sections studied in the light microscope or thin sections studied in the electron microscope the peroxidase activity is observed in cytoplasmic granules in cells of the convoluted tubules of the ducts. No activity is seen in the acini or in cells of the intralobular striated ducts. The submandibular gland of the rat was negative with respect to peroxidase reaction. The findings are discussed with special reference to the possible correlation between peroxidase activity and iodine metabolism in salivary glands.  相似文献   

3.
Summary The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequisite for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10−3 M and for peroxidatic activity of catalase at 10−1 M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10−3 M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10−1 M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2–0.5 μ) particles similar to small peroxisomes described in various other cell-types. This work was presented in part at the twenty-fifth Annual Meeting of the Histochemical Society, April 5–6, 1974. Atlantic City, N.J., J. Histochem. Cytochem.22, 288 (1974).  相似文献   

4.
Summary A light microscopic histochemical investigation of endogenous peroxidase activity in specimens of the submandibular salivary glands of man, hamster, rabbit, dog and guinea pig was carried out. A modification of the original Graham and Karnovsky diaminobenzidine (DAB)-hydrogen peroxide method was employed at different pH's.At all pH's (6.0, 7.6, and 9.0) a positive DAB reaction was found: in serous acinar cells in four of seven human submandibular glands, in convoluted tubule cells of the hamster, in acinar tissue, in secretory granular tubule cells and in the saliva of the guinea pig. This staining pattern was not markedly affected by KCN or 2,4-dichlorophenol (DCP). Furthermore, small cytoplasmic granules in collecting ducts of the dog displayed positive, KCN- and DCP-resistant DAB staining at all pH's tested. No reaction was observed in the acinar cells of the dog and rabbit glands.Mitochondrial oxidation of DAB in the striated duct cells occurred in all of the glands examined. Optimal staining of these cells was obtained at pH 6.0, but there was also strong positive staining at pH 7.6. At pH 9.0, however, the staining of the striated duct cells was very faint. The positive reaction in the striated duct cells was completely abolished by KCN.  相似文献   

5.
Ultrastructural localization of glucose-6-phosphatase activity was studied in the cells of the pancreas and submandibular gland of the mouse using a incubation medium modified from that of Wachstein & Meisel (1956). In pancreatic acinar cells, the reaction product for the enzyme activity was not found even after 90 min of incubation with three changes of the medium. However, the reaction product was localized in the endoplasmic reticulum and nuclear envelope of all other cell types composing the pancreas and submandibular gland. The reaction product appeared in moderate to abundant amounts in acinar cells and striated duct cells of the submandibular gland, and in the B cells, A and D cells of the pancreatic islet, but it was scarce in other cell types.  相似文献   

6.
Endogenous peroxidase activity has been demonstrated in sections of rat liver fixed briefly by glutaraldehyde perfusion and incubated in Graham and Karnovsky's medium for cytochemical demonstration of peroxidase activity (29). In 25–40% of sinusoidal cells, an electron-opaque reaction product is localized in segments of the endoplasmic reticulum, including the perinuclear cisternae, a few Golgi vesicles and saccules and in some large membrane-bounded granules. This staining is abolished after prolonged fixation or boiling of tissue sections in glutaraldehyde, and in the absence of H2O2 or DAB from the incubation medium. Furthermore, the reaction is inhibited completely by sodium azide and high concentrations of H2O2, and partially by KCN and aminotriazole. Among the different cells in hepatic sinusoids, the nonphagocytic "fat-storing" cells (39) are always peroxidase negative, whereas the lining cells in process of erythrophagocytosis are consistently peroxidase positive. The possible biological significance of endogenous peroxidase in Kupffer cells is discussed. In addition, the uptake of exogenous horseradish peroxidase by Kupffer cells has been investigated. The exogenous tracer protein, which in contrast to endogenous peroxidase of Kupffer cells is not inhibited by prolonged aldehyde fixation, is taken up by micropinocytosis and remains confined to the lysosomal system of Kupffer cells. The significance of these observations in respect to some recent studies suggesting localization of exogenous peroxidases in the endoplasmic reticulum of Kupffer cells and peritoneal macrophages (22, 23) is briefly discussed.  相似文献   

7.
Summary The DAB reactivity of the midintestine of the earthworm, consisting of epithelial layer, muscle layer, and chloragogen tissue, was examined electron microscopically. Besides the mitochondrial membranes of the examined cell types and the hemoglobin content of the blood vessels and chloragogen cells, a considerable DAB reactivity was found in the whole cytosol of the chloragocytes. The DAB reaction of the cytosol was more intensive when incubation medium for catalase, less intensive when incubation medium for peroxidase, was used and did not occur when H2O2 was omitted.Cytosol of the chloragogen cells was isolated and preliminary assay of catalase and peroxidase activities was made. Cytosol samples showed moderate peroxidase activity, but catalase activity measured by the decomposition of hydrogen peroxide showed a very high rate. Catalase and peroxidase activities of the cytosol were heat-sensitive and might have been inhibited by azide and cyanide, respectively. Results prove the assumption that the intensive DAB reactivity of the chloragocyte cytosol is caused by its extraperoxisomal catalase content.  相似文献   

8.
Cyclic AMP response element-binding protein (CREB) is a 43-kDa polypeptide that binds a cAMP response element located at the 5 promoter region of cAMP regulatory genes. The spatial and temporal distribution of CREB in the post-natal development of the rat submandibular gland was investigated using immunohistochemistry with a specific antibody. At birth, cells of the terminal tubules and ducts in the submandibular gland showed a nuclear CREB immunoreactivity of moderate intensity. At 1–2 weeks after birth, an intense CREB immunoreactivity was localized primarily to acinar cells. When the r352;-adrenergic agonist isoproterenol was administered to 2-week-old rats, a twofold transient increase in the number of immunoreactive acinar cells was induced. Beginning 3 weeks after birth, CREB immunoreactivity shifted from acini to the duct system and showed a clear localization in the cells of the intercalated ducts and distal portions of striated ducts, where the granular convoluted tubule develops after 4 weeks. Immunopositive materials were localized exclusively in the nuclei of both acinar and ductal immunoreactive cells. After the development of the granular convoluted tubules, CREB immunoreactivity was absent in the tubule cells and was gradually reduced in intensity over the entire gland. In order to examine a hypothesis that CREB is involved in the initial differentiation of the granular convoluted tubular cells, testosterone was administered to hypophysectomized adult rats. Whereas the tubular cells of hypophysectomized rats showed a complete regression, and no CREB immunoreactivity was found in any acinar or duct cells, administration of testosterone for a few days induced an intense CREB immunoreactivity in the nuclei of duct cells, followed by their differentiation into the granular convoluted tubular cells. These results suggested that CREB is involved not only in the growth and differentiation of acinar ce lls that are regulated by r352;-adrenergic nerves but also in those of the duct system, and especially in the androgen-regulated differentiation of the granular convoluted tubular cells, during the post-natal development of the rat submandibular gland.  相似文献   

9.
Summary Nerve growth factor (NGF) was localized in the submandibular, sublingual, and parotid salivary glands of male and female diabetic mice and their normal littermates by immunoperoxidase staining usingp-phenylenediamine-pyrocatechol as a chromogen for the cytochemical demonstration of peroxidase activity. In the normal male submandibular gland, immunoreactive NGF was localized in the apical regions of granular, intercalated and collecting duct cells, while in the normal female submandibular gland, NGF was present throughout the cytoplasm of granular duct cells. The localization of NGF in the diabetic male and female submandibular glands was similar and resembled that of the normal female. NGF immunoreactivity was also observed in the striated duct cells in the sublingual and parotid glands of all four types of mice.The sympathetic innervation of the submandibular glands of normal and diabetic mice was demonstrated using glyoxylic acid-induced histofluorescence. The pattern of sympathetic innervation and the intensity of catecholamine fluorescence was consistently different in the four types of mice. In the normal male submandibular gland the fluorescence was very intense, particularly in nerves adjacent to the granular ducts. In the normal female submandibular gland, the fluorescence was weak, while in the diabetic male and female the fluorescence was moderate.The correlation between the intensity of the immunocytochemical staining for NGF and the catecholamine fluorescence adjacent to the granular ducts suggests a trophic influence of the NGF-containing granular ducts on their sympathetic innervation.  相似文献   

10.
Summary We have tried to improve existing methods for demonstration of platelet peroxidase (PPO) in human platelets and megakaryocytes by introducing a fixation in 0.1% glutaraldehyde prior to incubation in the DAB medium. This prefixation with low concentration of glutaraldehyde preserves excellent morphological detail and does not inhibit PPO activity. All 23 platelet-rich plasma samples show PPO reaction product in the dense tubular system after incubation in DAB medium with 0.003% H2O2. When 0.01% H2O2 is used in excessive DAB medium, PPO activity can also be demonstrated in platelets and megakaryocytes of bone-marrow cell suspensions. This method can be used for the identification of megakaryoblasts in acute non-lymphocytic leukemia, myelodysplastic syndromes and in blastic crisis of chronic myeloid leukemia. PPO cytochemistry can be combined with postfixation in a OsO4-ruthenium red mixture. This method reveals -granules, dense bodies, microtubul,, glycogen, mitochondria, dense tubular system and invaginated membrane system in the same platelet and is useful for investigation of platelet ultrastructure.  相似文献   

11.
Hemoproteins were localized in the cyanobacteriumAnabaena cylindrica with diaminobenzidine (DAB). Incubation of whole cells in the light with DAB resulted in deposition of oxidized DAB on the lamellae of the vegetative cells and central heterocyst region. This reaction was greatest at pH 7.5, light-dependent, insensitive to 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea, and abolished by glutaraldehyde fixation. A light-independent oxidation of DAB was also observed with light and electron microscopy in the honeycomb region and periphery of heterocysts. This reaction was greatest at pH 7.5, enhanced by H2O2, and active in glutaraldehyde-fixed frozen sections. Inhibitors such as sodium cyanide, sulfide, and hydroxylamine severely reduced DAB oxidation and nitrogenase activity under aerobic but not anaerobic conditions. These results indicate that the heme proteins, localized in heterocysts by light-independent DAB oxidation, are involved in the oxygen-protection mechanism of the O2-labile nitrogenase.  相似文献   

12.
The distribution of endogenous peroxidase activity in the lacrimal gland of the rat during postnatal development was investigated by electron microscope cytochemistry Peroxidase activity is first found 6 hr after birth in only a few acinar cells At this stage, reaction product fills only localized segments of the scant rough endoplasmic reticulum and of the perinuclear cisternae. Peroxidase activity thus develops asynchronously in a given cell as well as in the secretory cell population as a whole 2 days after birth, all cisternae of the rough endoplasmic reticulum of a peroxidase-positive cell contain reaction product, but the majority of the acinar cells is still negative During the next days, the number of peroxidase-positive cells and the amount of the rough endoplasmic reticulum increase rapidly. By 15 days postparturition, all secretory cells are peroxidase-positive. Reaction product is then found in all cisternae of the rough endoplasmic reticulum including the perinuclear cisternae, in smooth surface vesicles located mainly between the rough endoplasmic reticulum and the Golgi stacks, in condensing vacuoles, and in all secretory granules The Golgi cisternae rarely contain reaction product In total homogenates and in fractions of glandular tissue of adult rats, peroxidatic and catalatic activities are demonstrable. The microsomal fractions and the postmicrosomal supernatants were used to separate peroxidase from catalase by precipitation with ammonium sulfate, and the following parameters were determined: substrate (H2O2-) optimum (∼ 2.0 x 10-4 M), pH-optimum (pH 6 5), temperature-optimum (42°C), and the absorption maximum (415 nm before and 425 nm after addition of H2O2) The same parameters were obtained from lacrimal fluid peroxidase. Both peroxidase from lacrimal gland and that from lacrimal fluid are almost completely inhibited by 10-3 M aminotriazole and are possibly identical enzymes. Peroxidase is secreted into lacrimal fluid, which does not contain catalase.  相似文献   

13.
The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequistie for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10(-3)M and for peroxidatic activity of catalase at 10(-1)M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10(-3)M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10(-1)M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2-0.5 mu) particles similar to small peroxisomes described in various other cell-types.  相似文献   

14.
The effect of pilocarpine and food uptake on the rate of incorporation of [3H]-leucine in vivo was measured by means of quantitative radioautography in three exocrine cells of the rat: the acinar and the granular duct cells of the submandibular and the acinar cells of the parotid gland. The three cell types react differently. The submandibular acinar cells showed a decrease in incorporation rate after pilocarpine administration but not after feeding. The incorporation rate of the granular duct cells of the submandibular gland remains constant after both stimulations. The acinar cells of the parotid gland show an increase in incorporation rate of [3H]-leucine in response to both. The contrast between the submandibular and the parotid gland could also be demonstrated radiobiochemically, the results reflecting the incorporation rates of the acinar cells of both glands, giving no information on the contribution of other cell types. The decrease in incorporation rate of the submandibular gland acinar cells is accompained by a shift of polyribosomes towards monomers.  相似文献   

15.
Summary Visualization methods for the light microscopic detection of the activity of oxidases after being localized with cerium ions as reported by Angermüller and Fahimi (1988a, b) are not suitable for the demonstration of H2O2-genrating oxidases at sites with low activity. Therefore, the cerium-diaminobenzidine (DAB) visualization procedure of these authors was modified. Nickel or cobalt ions were added to the DAB solution together with small amounts of H2O2. Visualization was performed in a one-step-method. This modified visualization technique enables light micro-scopic detection of amino acid oxidase activity in kidney and liver cells where it was found with the original method but the amounts of final reaction product were considerably higher. Moreover, the DAB-nickel-H2O2 and DAB-cobalt-H2O2 procedures were more sensitive than the cerium-lead method of Angermüller and Fahimi (1988a, b). The method appeared to be specific, because final reaction product was not found after control incubation. Especially the DAB-nickel-H2O2 procedure can also be used for immunohistochemistry when glucose oxidase serves as the enzyme label.Supported by the Deutsche Forschungsgemeinschaft (Sfb 174)  相似文献   

16.
Previous studies have shown that the hydroxyl radical derived from hydrogen peroxide (H2O2) is involved in lignin degradation by Phanerochaete chrysosporium. In the present study, the ultrastructural sites of H2O2 production in ligninolytic cells of P. chrysosporium were demonstrated by cytochemically staining cells with 3,3′-diaminobenzidine (DAB). Hydrogen peroxide production, as evidenced by the presence of oxidized DAB deposits, appeared to be localized in the periplasmic space of cells from ligninolytic cultures grown for 14 days in nitrogen-limited medium. When identical cells were treated with DAB in the presence of aminotriazole, periplasmic deposits of oxidized DAB were not observed, suggesting that the deposits resulted from the H2O2-dependent peroxidatic oxidation of DAB by catalase. Cells from cultures grown for 3 or 6 days in nitrogen-limited medium or for 14 days in nitrogen-sufficient medium had little ligninolytic activity and low specific activity for H2O2 production and did not contain periplasmic oxidized DAB deposits. The results suggest that in cultures grown in nitrogen-limited medium, there is a positive correlation between the occurrence of oxidized DAB deposits, the specific activity for H2O2 production in cell extracts, and ligninolytic activity.  相似文献   

17.
Summary The postnatal development of the submandibular gland was investigated in male mice of the Swiss-Webster strain, which were killed at 1, 2, 3, 4, 5, 6, 8, 10, 12, 16 and 20 weeks of age, while the older mice had been weaned at 3 weeks of age. The mean weight of the submandibular gland increases from 9.5 mg at 1 week to 232.9 mg at 20 weeks of age, and the rate of increase is rapid between 3 and 10 weeks of age. The gland's contents of DNA, RNA and protein increase in a similar manner.The changes in the constituent cell types of the gland were studied in radioautographs prepared from Epon-embedded sections of mice given 3H-thymidine and stained with toluidine blue. At 1 week of age, the gland consists of acinar cells (36%), intercalated duct cells (26%), juxta-acinar cells (13%), striated duct cells (12%) and others. The cellular composition of the gland changes little before weaning, but the absolute number of all types of cells increases with age. Between 3 and 4 weeks, juxta-acinar cells disappear and granular convoluted tubule cells appear and increase rapidly in number with age. The rapid expansion of the population size of granular convoluted tubule cells after weaning coincides with the second peak of increased proliferative activity of intercalated duct cells, whereas all the other cell types show a progressive decrease in their proliferative activity with age. In spite of the burst in proliferative activity, there is no corresponding increase in the absolute number of intercalated duct cells. The number of striated duct cells peak at 5 weeks of age and then declines. These findings indicate that the mitoses of intercalated duct cells give rise to granular convoluted tubule cells through a stage of striated duct cells. At 20 weeks of age, the gland consists of granular convoluted tubule cells (47%), acinar cells (28%), intercalated duct cells (12%), striated duct cells (1%) and others.Supported by Public Health Service Research Grant AMDE 19753 from the National Institute of Health. The authors are indebted to Mr. I. Borcsanyi for technical assistance  相似文献   

18.
Summary Antibodies against murine submandibular and sublingual mucins have been raised in rabbits. Both antisera appeared to be specific. Using these antibodies, the mucins were localized in the acinar cells of the submandibular and sublingual glands respectively.The dyed amylopectin method was used to estimate the activity of amylase in the salivary glands. The enzyme was localized either by a starch-substrate film method or with antibodies against purified parotid amylase. The activity of amylase in parotid homogenates is about 1000-fold higher than that in homogenates of either submandibular or sublingual glands, in which the activity was comparable. Amylase was localized in the acinar cells of the parotid gland with both localization techniques. In the sublingual gland, amylase was found predominantly in the stroma around the acini, and there was some evidence that amylase was present in the demilune cells as well. In the submandibular gland, contradictory results were obtained with both techniques. With the starch-substrate film method, amylase activity was found in the granular convoluted tubular cells, whereas immuno-reactive amylase could only be demonstrated in the acinar cells of this gland. It is concluded that in the submandibular gland amylase and mucin are present in the same cell type.  相似文献   

19.
 Secreted carbonic anhydrase (isozyme VI; CA VI) was localized by immunohistochemistry in the developing postnatal rat submandibular and parotid glands using a specific monoclonal antibody to the rat enzyme. CA VI immunostaining was not detectable in the glands before birth. In the submandibular gland, granular immunostaining for CA VI was detectable in several terminal tubule cells of 1-day-old rats. At 1 week, the CA VI-positive cells were located at the periphery of the terminal tubules and appeared to be budding off the tubules. These cellular buds gradually increased, and, by 4 weeks, formed acini. CA VI was also detected in the duct lumen from day 1. The immunostaining in the parotid gland was detected sporadically in the acinar cells at 2 or 3 weeks. By 4 weeks, when the gland was almost indistinguishable from the adult one, the number of positive acinar cells had increased. Their number, however, was far smaller than in the adult gland, and the enzyme could not be detected in the duct lumen. CA II was also localized using specific antibodies to the rat isozyme. CA II was detectable in the inter- and intralobular striated ducts at 2 weeks after birth in the submandibular gland and at 3 weeks in the parotid gland. These results suggset that CA VI is secreted into saliva from soon after birth and that CA II appears in parallel with the functional maturation of the ducts. In addition, CA II was transiently expressed by the cellular buds of the submandibular gland at 2 and 3 weeks. Accepted: 7 January 1998  相似文献   

20.
Summary In rat liver, three different enzymes with peroxidatic activity are demonstrated with modifications of the DAB-technique: peroxidase in the endoplasmic reticulum of Kupffer cells, catalase in peroxisomes and cytochrome oxidase in mitochondria. The major problem of the DAB-methods is their limited specifity so that often in tissues incubated for one enzyme the other two proteins are also stained simultaneously. We have studied the conditions for selective staining of each of these three enzymes in rat liver fixed either by perfusion with glutaraldehyde or by immersion in a modified Karnovsky's glutaraldehyde-formaldehyde fixative. The observations indicate that in perfusion fixed material selective staining can be obtained by reduction of the incubation time (5 min) and the use of optimal conditions for each enzyme. In livers fixed by immersion the distribution of the staining is patchy and irregular and usually longer incubation times (15–30 min) are required. Selective staining of peroxidase in Kupffer cells was obtained by brief incubation at room temperature in a medium containing 2.5 mM DAB in cacodylate buffer pH 6.5 and 0.02% H2O2. The exclusive staining for cytochrome oxidase in cristae of mitochondria was achieved after short incubation in 2.5 mM DAB in phosphate buffer pH 7.2 containing 0.05% cytochrome c. For selective demonstration of catalase in peroxisomes the tissue was incubated in 5 mM DAB in Teorell-Stenhagen (or glycine-NaOH) butffer at pH 10.5 and 0.15% H2O2. The prolongation of the incubation time in peroxidase medium caused marked staining of both mitochondria and peroxisomes. In the cytochrome oxidase medium longer incubations led to slight staining of peroxisomes. The catalase medium was quite selective for this enzyme so that even after incubation for 120 min only peroxisomes stained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号