首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
WI-38 cells can remain quiescent for long periods of time and still be induced to reenter the cell cycle by the addition of fresh serum. However, the longer these cells remain growth arrested, the more time they require to enter S phase. This prolongation of the prereplicative phase has been localized to a point early in G1, after the induction of “immediate early” G1 genes such as c-fos and c-jun but before maximal expression of “early” G1 genes such as ornithine decarboxylase (ODC). Understanding the molecular basis for ODC mRNA induction can therefore provide information about the molecular events which regulate the progression of cells out of long-term quiescence into G1 and subsequently into DNA synthesis. Studies utilizing electrophoretic mobility shift assays (EMSA) of nuclear extracts from short- and long-term quiescent WI-38 cells identified a region of the human ODC promoter at ?491 bp to ?474 bp which exhibited a protein binding pattern that correlated with the temporal pattern of ODC mRNA expression. The presence of a CACGTG element within this fragment, studies with antibodies against c-Myc and Max, the use of purified recombinant c-Myc protein in the mobility shift assay, and antisense studies suggest that these proteins can specifically bind this portion of the human ODC promoter in a manner consistent with growth-associated modulation of the expression of ODC and other early G1 genes following prolonged quiescence. These studies suggest a role for the c-Myc/Max protein complex in regulating events involved in the progression of cells out of long-term quiescence into G1 and subsequently into S. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Lüscher B 《Gene》2001,277(1-2):1-14
  相似文献   

4.
5.
6.
Translational regulation of ornithine decarboxylase by polyamines   总被引:12,自引:0,他引:12  
L Persson  I Holm  O Heby 《FEBS letters》1986,205(2):175-178
  相似文献   

7.
8.
9.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

10.
11.
D L Solomon  B Amati    H Land 《Nucleic acids research》1993,21(23):5372-5376
  相似文献   

12.
13.
14.
15.
The human TATA binding protein (TBP) locus consists of a functional domain of three closely linkedhousekeeping genes (TBP, PSMB1 (proteasomal C5 subunit), and PDCD2 (programmed cell death-2)) within a 50-kb interval at chromosome position 6q27. Here we demonstrate that a genomic clone spanning the 20-kb TBP gene, with 12 kb 5' and 3' flanking sequences, was fully functional in stable, transfected L-cells harboring a single copy of this transgene, including after long-term (60 day) culture in the absence of drug selective pressure. Furthermore, we were only able to detect DNaseI hypersensitive sites at the TBP and PSMB1 promoters present within this 44-kb fragment. Our data suggest that this 44-kb genomic region possesses genetic regulatory elements that not only drive ubiquitous expression of TBP but also negate chromatin and DNA methylation induced silencing, which is normally associated with transgenes stably integrated into tissue culture cells.  相似文献   

16.
Management of polyamine pools and the regulation of ornithine decarboxylase   总被引:1,自引:0,他引:1  
The management of polyamine synthesis and polyamine pools differs fundamentally from that of most other small molecular-weight endproducts. The polyamines are vital to growth and important cellular functions, but they are toxic in excess. I argue here that their multivalent cationic character, leading to binding to cell constituents, precludes fluent feedback inhibition of synthesis. This has led to the development of elaborate alternative regulatory mechanisms controlling ornithine decarboxylase, the key initial enzyme of the pathway. Poorly regulated polyamine synthesis and the toxicity of polyamines impose upon cells a need to control uptake and to dispose of excess polyamines. Recent data on polyamine transport suggest unorthodox mechanisms of accomplishing these functions.  相似文献   

17.
When spermidine, putrescine or 1,3-diaminopropane was injected (12.5 mumol/100 g body weight) into rats 1 h before thyrotropin, ornithine decarboxylase activity was increased by 75--150% over control levels. However, when greater than or equal to 75 mumol polyamine/100 g body weight was injected, thyrotropin-activated activity was inhibited by 70--95%. Multiple polyamine injections inhibited goitrogen-induced activity and gland weight increase by approx 35%. The polyamines also inhibited thyrotropin-activated rat thyroid ornithine decarboxylase in vitro in a dose-related fashion, with 50% inhibition occurring at 2--5 . 10(-4)M. The inhibition was not due to a direct effect on the enzyme. No stimulation was seen with low concentrations of polyamine. The polyamines had no effect on in vitro thyroid protein/RNA synthesis or glucose oxidation but had a biphasic effect on plasma membrane adenylate cyclase activity. A protein inhibitor to thyroid ornithine decarboxylase was generated in vivo by multiple injections of the polyamines into rats and in vitro by incubating bovine thyroid slices with 2--10 mM polyamine. The inhibitor was non-dialyzable, destroyed by boiling, and its formation was blocked in a dose-related fashion by cycloheximide. We conclude that: (1) thyroid ornithine decarboxylase is subject not only to positive control, but is also negatively regulated by its end-products, the polyamines, which induce a protein inhibitor to ornithine decarboxylase; (2) since gland growth is also inhibited under these conditions, the polyamine effect on thyroid ornithine decarboxylase may be biologically significant.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号