首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R24 is a mouse IgG3 monoclonal antibody (mab) that reacts with the ganglioside GD3 expressed by cells of neuroectodermal origin. The anti-tumor activity of R24 has been demonstrated in initial phase I and pilot trials in patients suffering from metastatic melanoma. The purpose of this study was to investigate the biotechnological production and particularly the glycosylation of this clinically important antibody. Growth, metabolism, and IgG production of R24 secreting hybridoma cells were analyzed on 1 L bioreactor bench scale using repeated-batch mode. The amount of 57 mg of pure mab was obtained from 1.6 L crude supernatant by protein A chromatography. Western blot binding assays with sugar-specific lectins revealed glycosylation of the heavy chains, whereas no carbohydrates were detectable on the light chains. Because glycosylation is essential for antibody effector functions in vivo (such as complement fixation or binding to macrophage Fc receptors), mab R24 was subjected to both enzymatic deglycosylation using PNGase F and chemical deglycosylation by hydrazinolysis. Released glycans were structurally characterized by high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), matrix assisted laser desorption ionization time-of-flight (MALDI-TOF), and electrospray ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry. Six major biantennary chains of the complex glycosylation phenotype were found with variations in galactosylation and core fucosylation. The predominant N-linked structure, indicating the high degree of agalactosyl glycoforms, was the agalacto biantennary chain with a relative percentage of 57% (51% core-fucosylated, 6% nonfucosylated). The second most abundant oligosaccharide was the monogalacto biantennary chain amounting to 30% (26% core- and 4% nonfucosylated). The antibody contained 0.46 microg sialic acid per mg protein, which splits into 0.243 microg Neu5Gc and 0.217 microg Neu5Ac, corresponding to a Neu5Ac:Neu5Gc ratio of 1:1.06. Furthermore, the antigen specificity of R24 was determined by immunodetection of GD3 on thin-layer chromatograms, and real time GD3-antibody binding interactions were measured with an optical biosensor (BIAcore). From the structural data obtained in this study it is concluded that glycosylation of the antibody may be important in the clinical outcome of targeted anti-cancer immunotherapy.  相似文献   

2.
Five variants of mouse serum transferrin (mTf, designated mTf-I to mTf-V) with respect to carbohydrate composition have been isolated by DEAE-cellulose chromatography in the following relative percentages: mTf-I: 0.55; mTf-II: 0.79; mTf-III: 71.80; mTf-VI: 21. 90 and mTf-V: 4.96. The primary structures of the major glycans from mTf-III and mTf-IV were determined by methylation analysis and 1H-nuclear magnetic resonance (NMR) spectroscopy. All glycans possessed a common trimannosyl-N,N'-diacetylchitobiose core. From the glycovariant mTf-III two isomers of a conventional biantennary N-acetyllactosamine type were isolated, in which two N-glycolylneuraminic acid (Neu5Gc) residues are linked to galactose either by a (alpha 2-6) or (alpha 2-3) linkage. A subpopulation of this glycovariant contains a fucose residue (alpha 1-6)-linked to GlcNAc-1. The structure of the major glycan found in variant mTf-IV contained an additional Neu5Gc and possessed the following new type of linkage: Neu5Gc(alpha 2-3)Gal(beta 1-3)[Neu5Gc(alpha 2-6)]GlcNAc(beta 1-2 )Man(alpha 1-3). In addition to this glycan, a minor compound contained the same antennae linked to Man(alpha 1-6). In fraction mTf-V, which was found to be very heterogeneous by (1)H NMR analysis, carbohydrate composition and methylation analysis suggested the presence of tri'-antennary glycans sialylated by Neu5Gc alpha-2,6- and alpha-2, 3-linked to the terminal galactose residues. In summary, mTf glycans differed from those of other analyzed mammalian transferrins by the presence of Neu5Gc and by a Neu5Gc(alpha 2-6)GlcNAc linkage in trisialylated biantennary structures, reflecting in mouse liver, a high activity of CMP-Neu5Ac hydroxylase and (alpha 2-6)GlcNAc sialyltransferase.  相似文献   

3.
The VP8* subunit of rotavirus spike protein VP4 contains a sialic acid (Sia)-binding domain important for host cell attachment and infection. In this study, the binding epitope of the N-acetylneuraminic acid (Neu5Ac) derivatives has been characterized by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. From this STD NMR data, it is proposed that the VP8* core recognizes an identical binding epitope in both methyl alpha-D-N-acetylneuraminide (Neu5Acalpha2Me) and the disaccharide methyl S-(alpha-D-N-acetylneuraminosyl)-(2-->6)-6-thio-beta-D-galactopyranoside (Neu5Ac-alpha(2,6)-S-Galbeta1Me). In the VP8*-disaccharide complex, the Neu5Ac moiety contributes to the majority of interaction with the protein, whereas the galactose moiety is solvent-exposed. Molecular dynamics calculations of the VP8*-disaccharide complex indicated that the galactose moiety is unable to adopt a conformation that is in close proximity to the protein surface. STD NMR experiments with methyl 9-O-acetyl-alpha-D-N-acetylneuraminide (Neu5,9Ac(2)alpha2Me) in complex with rhesus rotavirus (RRV) VP8* revealed that both the N-acetamide and 9-O-acetate moieties are in close proximity to the Sia-binding domain, with the N-acetamide's methyl group being saturated to a larger extent, indicating a closer association with the protein. RRV VP8* does not appear to significantly recognize the unsaturated Neu5Ac derivative [2-deoxy-2,3-didehydro-D-N-acetylneuraminic acid (Neu5Ac2en)]. Molecular modeling of the protein-Neu5Ac2en complex indicates that key interactions between the protein and the unsaturated Neu5Ac derivative when compared with Neu5Acalpha2Me would not be sustained. Neu5Acalpha2Me, Neu5Ac-alpha(2,6)-S-Galbeta1Me, Neu5,9Ac(2)alpha2Me, and Neu5Ac2en inhibited rotavirus infection of MA104 cells by 61%, 35%, 30%, and 0%, respectively, at 10 mM concentration. NMR spectroscopic, molecular modeling, and infectivity inhibition results are in excellent agreement and provide valuable information for the design of inhibitors of rotavirus infection.  相似文献   

4.
We found that the hepatopancreas of oyster, Crassostrea virginica, contained a sialidase capable of releasing Neu5Gc from the novel polysialic acid chain (-->5-O(glycolyl)Neu5Gcalpha2-->)n more efficiently than from the conventional type of polysialic acid chains, (-->8Neu5Acalpha2-->)n, or (-->8Neu5Gcalpha2-->)n. We have partially purified this novel sialidase and compared its reactivity with that of microbial sialidases using four different sialic acid dimers, Neu5Gcalpha2-->5-O(glycolyl)Neu5Gc (Gg2), Neu5Acalpha2-->8Neu5Ac (A2), Neu5Gcalpha2-->8Neu5Gc (G2), and KDNalpha2-->8KDN (K2) as substrates. Hydrolysis was monitored by high performance anion-exchange chromatography with a CarboPac PA-100 column and pulsed amperometric detection, the method by which we can accurately quantitate both the substrate (sialiac acid dimers) and the product (sialic acid monomers). The oyster sialidase effectively hydrolyzed Gg2 and K2, whereas A2 and G2 were poor substrates. Neu5Ac2en but not KDN2en effectively inhibited the hydrolysis of Gg2 by the oyster sialidase. Likewise, the hydrolysis of K2 by the oyster sialidase was inhibited by a cognate inhibitor, KDN2en, but not by Neu5Ac2en. Using the new analytical method we found that Gg2 was hydrolyzed less efficiently than A2 but much more readily than G2 by Arthrobacter ureafaciens sialidase. This result was at variance with the previous report using the thiobarbituric acid method to detect the released free sialic acid [Kitazume, S., et al. (1994) Biochem. Biophys. Res. Commun. 205, 893-898]. In agreement with previous results, Gg2 was a poor substrate for Clostridium perfringens sialidase, while K2 was refractory to all microbial sialidases tested. Thus, the oyster sialidase is novel and distinct from microbial sialidases with regards to glycon- and linkage-specificity. This finding adds an example of the presence of diverse sialidases, in line with the diverse sialic acids and sialic acid linkages that exist in nature. The new sialidase should become useful for both structural and functional studies of sialoglycoconjugates.  相似文献   

5.
Five variants of mouse serum transferrin (mTf, designated mTf-I to mTf-V) with respect to carbohydrate composition have been isolated by DEAE-cellulose chromatography in the following relative percentages: mTf-I: 0.55; mTf-II: 0.79; mTf-III: 71.80; mTf-VI: 21.90 and mTf-V: 4.96. The primary structures of the major glycans from mTf-III and mTf-IV were determined by methylation analysis and 1H-nuclear magnetic resonance (NMR) spectroscopy. All glycans possessed a common trimannosyl-N,N′-diacetylchitobiose core. From the glycovariant mTf-III two isomers of a conventional biantennary N-acetyllactosamine type were isolated, in which two N-glycolylneuraminic acid (Neu5Gc) residues are linked to galactose either by a (α2-6) or (α2-3) linkage. A subpopulation of this glycovariant contains a fucose residue (α1-6)-linked to GlcNAc-1. The structure of the major glycan found in variant mTf-IV contained an additional Neu5Gc and possessed the following new type of linkage: Neu5Gc(α2-3)Gal(β1-3)[Neu5Gc(α2-6)]GlcNAc(β1-2)Man(α1-3). In addition to this glycan, a minor compound contained the same antennae linked to Man(α1-6). In fraction mTf-V, which was found to be very heterogeneous by 1H NMR analysis, carbohydrate composition and methylation analysis suggested the presence of tri′-antennary glycans sialylated by Neu5Gc α-2,6- and α-2,3-linked to the terminal galactose residues. In summary, mTf glycans differed from those of other analyzed mammalian transferrins by the presence of Neu5Gc and by a Neu5Gc(α2-6)GlcNAc linkage in trisialylated biantennary structures, reflecting in mouse liver, a high activity of CMP-Neu5Ac hydroxylase and (α2-6)GlcNAc sialyltransferase.  相似文献   

6.
Neu2en5Ac is a minor component of body fluids and is abundant in sialuria, but no antibody to detect it has been reported. 5-Acetamido-2,6-anhydro-9-glutaramido-3,5,9-trideoxy-D-glycero-D- galacto-non-2-enonic acid has been synthesized and conjugated with keyhole limpet hemocyanin (KLH) for immunization. A hybridoma named SIC172 was obtained that produces a monoclonal antibody (MAb) to Neu2en5Ac. SIC172 MAb in culture supernatant bound strongly to the hapten conjugated to BSA in ELISA, but slightly to fetuin, a glycoprotein which is rich in Neu5Ac. SIC172 MAb (IgG3(kappa)), purified with a protein A/G affinity column, bound strongly to fetuin. Neu2en5Ac competed with the MAb in binding in amounts as low as 3 microM, while the competition of Neu5Ac appeared at amounts of more than 300 microM. SIC172 MAb is a unique MAb specific to Neu2en5Ac and might be useful for detecting Neu2en5Ac, which occurs naturally and in sialuria.  相似文献   

7.
N-Acetylneuraminic acid (Neu5Ac) andN-glycoloylneuraminic acid (Neu5Gc) are distributed widely in nature. Using a Carbopac PA-1 anion exchange column, we have determined the ratios of Neu5Ac and Neu5Gc in hydrolysates of platelets and their precursors: a rat promegakaryoblastic (RPM) cell line and a human megakaryoblastic leukemia cell line (MEG-01). The ratio of Neu5Gc:Neu5Ac in cultured RPM cells is 16:1, whereas in platelet rich plasma and cultured MEG-01 cells it is 1:38 and 1:28, respectively. The nature of these sialic acids from RPM cells was verified using thin layer chromatography and liquid secondary ion mass spectrometry. The relevance of increased Neu5Gc levels in early stages of development is discussed.Abbreviations Neu5Ac N-acetylneuraminic acid - Neu5Gc N-glycoloylneuraminic acid - RPM rat promegakaryoblast - MEG-01 human megakaryoblastic leukaemia cell line - PAD pulsed amperometric detection - WGA wheat germ agglutinin - FCS foetal calf serum - PPEADF phosphatidylethanolamine dipalmitoyl - LSIMS liquid secondary ion mass spectrometry - HPAEC high performance anion exchange chromatography - TBA thiobarbituric acid  相似文献   

8.
N-Glycolylneuraminic acid (Neu5Gc) is an oncofetal antigen in humans and is developmentally regulated in rodents. We have explored the biology of N-acetylneuraminic acid hydroxylase, the enzyme responsible for conversion of the parent sialic acid, N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. We show that the major sialic acid in all compartments of murine myeloma cell lines is Neu5Gc. Pulse-chase analysis in these cells with the sialic acid precursor [6-3H]N-acetylmannosamine demonstrates that most of the newly synthesized Neu5Gc appears initially in the cytosolic low-molecular weight pool bound to CMP. The percentage of Neu5Gc on membrane-bound sialic acids closely parallels that in the CMP-bound pool at various times of chase, whereas that in the free sialic acid pool is very low initially, and rises only later during the chase. This implies that conversion from Neu5Ac to Neu5Gc occurs primarily while Neu5Ac is in its sugar nucleotide form. In support of this, the hydroxylase enzyme from a variety of tissues and cells converted CMP-Neu5Ac to CMP-Neu5Gc, but showed no activity towards free or alpha-glycosidically bound Neu5Ac. Furthermore, the majority of the enzyme activity is found in the cytosol. Studies with isolated intact Golgi vesicles indicate that CMP-Neu5Gc can be transported and utilized for transfer of Neu5Gc to glycoconjugates. The general properties of the enzyme have also been investigated. The Km for CMP-Neu5Ac is in the range of 0.6-2.5 microM. No activity can be detected against the beta-methylglycoside of Neu5Ac. On the other hand, inhibition studies suggest that the enzyme recognizes both the 5'-phosphate group and the pyrimidine base of the substrate. Taken together, the data allow us to propose pathways for the biosynthesis and reutilization of Neu5Gc, with initial conversion from Neu5Ac occurring primarily at the level of the sugar nucleotide. Subsequent release and reutilization of Neu5Gc could then account for the higher steady-state level of Neu5Gc found in all of the sialic acid pools of the cell.  相似文献   

9.
The common sialic acids of mammalian cells are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans are an exception, because of a mutation in CMP-sialic acid hydroxylase, which occurred after our common ancestor with great apes. We asked if the resulting loss of Neu5Gc and increase in Neu5Ac in humans alters the biology of the siglecs, which are Ig superfamily members that recognize sialic acids. Human siglec-1 (sialoadhesin) strongly prefers Neu5Ac over Neu5Gc. Thus, humans have a higher density of siglec-1 ligands than great apes. Siglec-1-positive macrophages in humans are found primarily in the perifollicular zone, whereas in chimpanzees they also occur in the marginal zone and surrounding the periarteriolar lymphocyte sheaths. Although only a subset of chimpanzee macrophages express siglec-1, most human macrophages are positive. A known evolutionary difference is the strong preference of mouse siglec-2 (CD22) for Neu5Gc, contrasting with human siglec-2, which binds Neu5Ac equally well. To ask when the preference for Neu5Gc was adjusted in the human lineage, we cloned the first three extracellular domains of siglec-2 from all of the great apes and examined their preference. In fact, siglec-2 had evolved a higher degree of recognition flexibility before Neu5Gc was lost in humans. Human siglec-3 (CD33) and siglec-6 (obesity-binding protein 1) also recognize both Neu5Ac and Neu5Gc, and siglec-5 may have some preference for Neu5Gc. Others showed that siglec-4a (myelin-associated glycoprotein) prefers Neu5Ac over Neu5Gc. Thus, the human loss of Neu5Gc may alter biological processes involving siglec-1, and possibly, siglec-4a or -5.  相似文献   

10.
Recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells contain two forms of sialic acids; N-acetylneuraminic acid (Neu5Ac) as a major type and N-glycolylneuraminic acid (Neu5Gc) as a minor type. The Neu5Gc glycan moieties in therapeutic glycoproteins can elicit immune responses because they do not exist in human. In the present work, to reduce Neu5Gc levels of recombinant glycoproteins from CHO cell cultures, we coexpressed cytidine-5′-monophosphate-sialic acid transporter (CMP-SAT) that is an antiporter and transports cytosolic CMP-sialic acids (both forms) into Golgi lumen. When human erythropoietin was used as a target human glycoprotein, coexpression of CMP-SAT resulted in a significant decrease of Neu5Gc level by 41.4% and a notable increase of Neu5Ac level by 21.2%. This result could be reasonably explained by our hypothesis that the turnover rate of Neu5Ac to Neu5Gc catalyzed by CMP-Neu5Ac hydroxylase would be reduced through facilitated transportation of Neu5Ac into Golgi apparatus by coexpression of CMP-SAT. We confirmed the effects of CMP-SAT coexpression on the decrease of Neu5Gc level and the increase of Neu5Ac level using another glycoprotein human DNase I. Therefore, CMP-SAT coexpression might be an effective strategy to reduce the levels of undesired Neu5Gc in recombinant therapeutic glycoproteins from CHO cell cultures.  相似文献   

11.
The sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) and its hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc) differ by one oxygen atom. CMP-Neu5Gc is synthesized from CMP-Neu5Ac, with Neu5Gc representing a highly variable fraction of total Sias in various tissues and among different species. The exception may be the brain, where Neu5Ac is abundant and Neu5Gc is reported to be rare. Here, we confirm this unusual pattern and its evolutionary conservation in additional samples from various species, concluding that brain Neu5Gc expression has been maintained at extremely low levels over hundreds of millions of years of vertebrate evolution. Most explanations for this pattern do not require maintaining neural Neu5Gc at such low levels. We hypothesized that resistance of α2-8-linked Neu5Gc to vertebrate sialidases is the detrimental effect requiring the relative absence of Neu5Gc from brain. This linkage is prominent in polysialic acid (polySia), a molecule with critical roles in vertebrate neural development. We show that Neu5Gc is incorporated into neural polySia and does not cause in vitro toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed that mammalian and bacterial sialidases are much less able to hydrolyze α2-8-linked Neu5Gc at the nonreducing terminus. Notably, this difference was not seen with acid-catalyzed hydrolysis of polySias. Molecular dynamics modeling indicates that differences in the three-dimensional conformation of terminal saccharides may partly explain reduced enzymatic activity. In keeping with this, polymers of N-propionylneuraminic acid are sensitive to sialidases. Resistance of Neu5Gc-containing polySia to sialidases provides a potential explanation for the rarity of Neu5Gc in the vertebrate brain.  相似文献   

12.
Presence or absence of N-acetylneuraminic acid (Neu5Ac) can change a sialylated glycoprotein's serum half-life and possibly its function. We evaluated the linearity, sensitivity, reproducibility, and accuracy of a HPAEC/PAD method to determine its suitability for routine simultaneous analysis of Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). An effective internal standard for this analysis is 3-deoxy-d-glycero-d- galacto-2-nonulosonic acid (KDN). We investigated the effect of the Au working electrode recession and determined that linear range and sensitivity were dependent on electrode recession. Using an electrode that was 350 &mgr;m recessed from the electrode block, the minimum detection limits of Neu5Ac, KDN, and Neu5Gc were 2, 5, and 2 pmol, respectively, and were reduced to 1, 2, and 0.5 pmol using a new electrode. The response of standards was linear from 10 to 500 pmol (r2>0.99) regardless of electrode recession. When Neu5Ac, KDN, and Neu5Gc (200 pmol each) were analyzed repetitively for 48 h, area RSDs were <3%. Reproducibility was unaffected when injections of glycoprotein neuraminidase and acid digestions were interspersed with standard injections. Area RSDs of Neu5Ac and Neu5Gc improved when the internal standard was used. We determined the precision and accuracy of this method for both a recessed and a new working electrode by analyzing Neu5Ac and Neu5Gc contents of bovine fetuin and bovine and human transferrins. Results were consistent with published values and independent of the working electrode. The sensitivity, reproducibility, and accuracy of this method make it suitable for direct routine analysis of glycoprotein Neu5Ac and Neu5Gc contents.   相似文献   

13.
We have recently identified two novel cysteine proteinase inhibitors from the skin of Atlantic salmon (Salmo salar L.), named salmon kininogen and salarin. In preliminary experiments, the proteins were found to be both N- as well as O-glycosylated. In the present study we show that both proteins carry biantennary alpha2,3-sialylated N-glycans. A very high amount of O-acetylated Neu5Ac units are present in the N-glycans, comprising about 60% di-O-acetylated species. Non-O-acetylated Neu5Ac make up less than 5% of the sialic acids in the N-glycans. A small number of Neu5Acalpha2-8Neu5Ac structures were observed in the N-glycans as well. O-glycans from both proteins were recovered by reductive beta-elimination and were identified by mass spectrometric methods as mono- and disialylated core type 1 tri- and tetrasaccharides. The method used for O-glycan isolation prevented the identification of possible O-acetylation in the O-glycan-bound sialic acids, but O-acetylation was observed in one O-glycosylated peptide isolated from trypsin digest of salarin. The chemical nature of the sialic acid modifications was further studied by liquid chromatography tandem mass spectrometry of 1,2-diamino-4,5-methylenedioxybenzene-derivatized sialic acids, revealing 7-, 8-, and 9- but no 4-O-acetylation. To our knowledge, these are the first observations of sialic acid O-acetylation in N-glycans on fish species and represent clearly the most extensive N-glycan O-acetylation described on any species.  相似文献   

14.
CHO cells express glycoproteins containing both the N‐acetylneuraminic acid (Neu5Ac) and minor amounts of the N‐glycolylneuraminic acid (Neu5Gc) forms of sialic acid. As Neu5Gc is not expressed in humans and can be recognized as a foreign epitope, there is the potential for immunogenicity issues for glycoprotein therapeutics. During process development of a glycosylated fusion protein expressed by CHO cells, a number of culture conditions were identified that affected the Neu5Gc content of the recombinant glycoprotein. Sodium butyrate (SB), a well‐known additive reported to enhance recombinant protein productivity in specific cases, minimally affected product titers here, but did decrease Neu5Gc levels by 50–62%. A shift in culture temperature to a lower value after the exponential growth phase was used to extend the culture period. It was found that the Neu5Gc levels were 59% lower when the temperature shift occurred later near the stationary phase of the culture compared to an early‐temperature shift, near the end of the exponential growth phase. Studies on the effects of pCO2 with this product showed that the Neu5Gc levels were 46% lower at high pCO2 conditions (140 mmHg) compared to moderate pCO2 levels (20–80 mmHg). Finally, a comparison of sodium carbonate versus sodium hydroxide as the base used for pH control resulted in a reproducible 33% decrease in Neu5Gc in bioreactors using sodium hydroxide. These results are of practical importance as SB is a commonly tested additive, and the other factors affecting Neu5Gc can conveniently be used to reduce or control Neu5Gc in processes for the manufacture of glycoprotein therapeutics. Biotechnol. Bioeng. 2010;105: 1048–1057. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Gangliosides from livers of weanling rats were analyzed after 15% partial hepatectomy (PH) and different pre- and post-operative hyberbaric oxygenation (pre- and postHBO). Neu5Ac was the predominant ganglioside-derived sialic acid (>85%) compared to Neu5Gc. Almost identical low total sialic acid content (Neu5Ac+Neu5Gc) of the control and operated nonHBO animals opposed a 6.4- to 7.6-fold increase in pre- and postHBO animals (69.26 and 81.64pmol/mg wet weight, respectively). NanoESI-QTOF mass spectrometry combined with HPTLC immunostaining revealed GM3(Neu5Ac) and GM3(Neu5Gc) as major gangliosides, correlating with the respective sialic acid concentrations. Minor neolacto-series gangliosides were enhanced in preHBO and postHBO, but GM1-core gangliosides only in preHBO rats. GM2 and GalNAc-GM1b were clearly detectable in oxygenated rats compared to traces in the control and nonHBO animals. These results point at a functional role of gangliosides in liver growth regulation and reconstitution after PH combined with pre- and post-operative HBO treatment.  相似文献   

16.
The conformation of the GM3 ganglioside, Neu5Ac alpha 2-3Gal beta 1-4Glc beta 1-1 Cer, and its analogs containing the Neu5Gc or Neu4Ac5Gc residues (Gc = glycolyl, CH2OHCO) was investigated in Me2SO-d6 solution with the aid of a distance-mapping procedure based on rotating-frame NOE contacts, with hydroxyl protons being used as long-range sensors defining the distance constraints. A pronounced flexibility found for both the Neu-Gal and Gal-Glc linkages was confirmed by 1000-ps molecular dynamics simulations. Similar results, although based on a smaller number of NOE constraints, were obtained for GM3 gangliosides anchored in mixed D2O/dodecylphosphocholine-d38 micelles and for the Neu5Ac-, Neu5Gc-, and Neu5,9Ac2-sialyllactoses dissolved in D2O. No noteworthy differences in conformational behavior of the glycan chains of the three gangliosides or sialyllactoses were observed in either of the media.  相似文献   

17.
Most mammalian cell surfaces display two major sialic acids (Sias), N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans lack Neu5Gc due to a mutation in CMP-Neu5Ac hydroxylase, which occurred after evolutionary divergence from great apes. We describe an apparent consequence of human Neu5Gc loss: domain-specific functional adaptation of Siglec-9, a member of the family of sialic acid-binding receptors of innate immune cells designated the CD33-related Siglecs (CD33rSiglecs). Binding studies on recombinant human Siglec-9 show recognition of both Neu5Ac and Neu5Gc. In striking contrast, chimpanzee and gorilla Siglec-9 strongly prefer binding Neu5Gc. Simultaneous probing of multiple endogenous CD33rSiglecs on circulating blood cells of human, chimp, or gorilla suggests that the binding differences observed for Siglec-9 are representative of multiple CD33rSiglecs. We conclude that Neu5Ac-binding ability of at least some human CD33rSiglecs is a derived state selected for following loss of Neu5Gc in the hominid lineage. These data also indicate that endogenous Sias (rather than surface Sias of bacterial pathogens) are the functional ligands of CD33rSiglecs and suggest that the endogenous Sia landscape is the major factor directing evolution of CD33rSiglec binding specificity. Exon-1-encoded Sia-recognizing domains of human and ape Siglec-9 share only approximately 93-95% amino acid identity. In contrast, the immediately adjacent intron and exon 2 have the approximately 98-100% identity typically observed among these species. Together, our findings suggest ongoing adaptive evolution specific to the Sia-binding domain, possibly of an episodic nature. Such domain-specific divergences should also be considered in upcoming comparisons of human and chimpanzee genomes.  相似文献   

18.
Sialic acids from the erythrocyte (RBC) membrane of a patient suffering from polycythemia vera, a malignant orphan disorder of hematopoietic cells, was studied using GC/MS. We found that the sialic acid diversity of these membranes was drastically reduced since only four entities were identified: Neu5Ac (91.5%) and its 1,7 lactone Neu5Ac1,7L (7.5%) which is absent in normal RBC, Neu4,5Ac(2) (0.50%) and Neu4,5Ac(2) 9Lt (0.50%); in normal RBC, Neu5,7Ac(2), Neu5,9Ac(2), Neu5Ac9Lt, Neu5Ac8S and Neu, as well as traces of Kdn, were also present. Neu5Gc and its O-alkylated or O-acetylated derivatives, which are considered by various authors as cancer markers, were not detected.  相似文献   

19.
The finding that N-glycoloylneuraminic acid (Neu5Gc) in pig submandibular gland is synthesized by hydroxylation of the sugar nucleotide CMP-Neu5Ac [Shaw & Schauer (1988) Biol. Chem. Hoppe-Seyler 369, 477-486] prompted us to investigate further the biosynthesis of this sialic acid in mouse liver. Free [14C]Neu5Ac, CMP-[14C]Neu5Ac and [14C]Neu5Ac glycosidically bound by Gal alpha 2-3- and Gal alpha 2-6-GlcNAc beta 1-4 linkages to fetuin were employed as potential substrates in experiments with fractionated mouse liver homogenates. The only substrate to be hydroxylated was the CMP-Neu5Ac glycoside. The product of the reaction was identified by chemical and enzymic methods as CMP-Neu5Gc. All of the CMP-Neu5Ac hydroxylase activity was detected in the high-speed supernatant fraction. The hydroxylase required a reduced nicotinamide nucleotide [NAD(P)H] coenzyme and molecular oxygen for activity. Furthermore, the activity of this enzyme was enhanced by exogenously added Fe2+ or Fe3+ ions, all other metal salts tested having a negligible or inhibitory influence. This hydroxylase is therefore tentatively classified as a monooxygenase. The cofactor requirement and CMP-Neu5Ac substrate specificity are identical to those of the enzyme in high-speed supernatants of pig submandibular gland, suggesting that this is a common route of Neu5Gc biosynthesis. The relevance of these results to the regulation of Neu5Gc expression in sialoglycoconjugates is discussed.  相似文献   

20.
Sialic acids (Sias) are often conjugated to the termini of cellular glycans and are key mediators of cellular recognition. Sias are nine-carbon acidic sugars, and, in vertebrates, the major species are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), differing in structure at the C5 position. Previously, we described a positive feedback loop involving regulation of Neu5Gc expression in mouse B cells. In this context, Neu5Gc negatively regulated B-cell proliferation, and Neu5Gc expression was suppressed upon activation. Similarly, resting mouse T cells expressed principally Neu5Gc, and Neu5Ac was induced upon activation. In the present work, we used various probes to examine sialoglycan expression by activated T cells in terms of the Sia species expressed and the linkages of Sias to glycans. Upon T-cell activation, sialoglycan expression shifted from Neu5Gc to Neu5Ac, and the linkage shifted from α2,6 to α2,3. These changes altered the expression levels of sialic acid-binding immunoglobulin-like lectin (siglec) ligands. Expression of sialoadhesin and Siglec-F ligands increased, and that of CD22 ligands decreased. Neu5Gc exerted a negative effect on T-cell activation, both in terms of the proliferative response and in the context of activation marker expression. Suppression of Neu5Gc expression in mouse T and B cells prevented the development of nonspecific CD22-mediated T cell-B cell interactions. Our results suggest that an activation-dependent shift from Neu5Gc to Neu5Ac and replacement of α2,6 by α2,3 linkages may regulate immune cell interactions at several levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号