首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Astrocytes constitute a major class of glial cells in the CNS, and play crucial roles in physiological functioning, performance and maintenance of the CNS, as well as promotion of neuronal migration and maturation. Astrocytes have also been directly and indirectly implicated in the pathophysiology of various trauma occurrences, development of neurodegenerative diseases and nerve regeneration. To further understand mechanisms by which astrocytes elicit these effects, the first critical step in the study of astrocytes is the preparation of purified astrocytes cultures. Here we describe a simple and convenient procedure for producing rat primary astrocyte cultures of high purity, viability and proliferation. For astrocyte culture, we have optimized the isolation procedures and cultivation conditions including coating substrates, enzyme digestion, seeding density and composition of the culture medium. Using immunofluorescent antibodies against GFAP and OX-42 in combination of Hoechst 33342 fluorescent staining, we found that the purity of the astrocyte cultures was >99%. Astrocytes had high viability as measured by 3-(4, 5-dimethyl-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. In addition, flow cytometric analysis was used to measure and observe variations in the cell cycle after 1–2 passages and proliferation of astrocytes was detected with a high percentage of cells stand in S+G2/M phase. Therefore, the method described here is ideal for experiments, which require highly pure astrocyte cultures.  相似文献   

2.
The present study localized corticotropin-releasing factor (CRF) receptors and studied the actions of CRF in the neonatal rat spinal cord preparation. Lumbar CRF receptors were present in highest concentrations in laminae I and II with progressively lower concentrations in lamina IX and intermediate and central zones respectively. CRF directly and indirectly depolarized lumbar motoneurons in a concentration-related manner and the putative receptor antagonist, alpha helical oCRF(9–41), partially blocked the depolarizing response to CRF. The electrophysiological responses to CRF and the distribution of receptors within the spinal cord suggest that CRF may play a physiological role in regulating spinal cord reflex function.  相似文献   

3.
We describe the use of the neutral protease Dispase for the dissociation of neonatal rat brain tissue for the preparation of primary monolayer astrocyte cultures. The method involves 5 to 6 successive extractions with careful separation of sedimenting, undissociated tissue. This method gives an initial cell suspension of high viability (93.7±1.7% cells exclude trypan blue). In comparison trypsin (0.25%) dissociated tissue gave a cell suspension that showed a lower viability of 58.2±7.6%. Identical saturation densities of 1.1 to 1.2×104 cells/cm2 after two weeks in culture were obtained for a range of seeding densities from 1 to 4×104 cells/cm2 of the Dispase dissociated tissue. Staining for glial fibrillary acidic protein showed that 90–100% cells were positive for this astroglial marker. Thus, the use of Dispase for the initial dissociation of rat brain tissue seems to give primary astrocyte cultures which are very reproducible and homogeneous.  相似文献   

4.
Radiation-induced apoptosis in the neonatal and adult rat spinal cord   总被引:5,自引:0,他引:5  
Li YQ  Wong CS 《Radiation research》2000,154(3):268-276
This study was designed to characterize radiation-induced apoptosis in the spinal cord of the neonatal and young adult rat. Spinal cords (C2-T2) of 1-, 2- and 10-week-old rats were irradiated with a single dose of 8, 18 or 22 Gy. Apoptosis was assessed histologically according to its specific morphological features or by using the TUNEL assay. Cell proliferation was assessed immunohistochemically using BrdU. Identities of cell types undergoing apoptosis were assessed using immunohistochemistry or in situ hybridization using markers for neurons, glial progenitor cells, microglia, oligodendrocytes and astrocytes. The time course of radiation-induced apoptosis in 1- or 2-week-old rat spinal cord was similar to that in the young adult rat spinal cord. A peak response was observed at about 8 h after irradiation, and the apoptosis index returned to the levels in nonirradiated spinal cords at 24 h. The neonatal rat spinal cord demonstrated increased apoptosis compared to the adult. Values for total yield of apoptosis over 24 h induced by 8 Gy in the neonatal rat spinal cord were significantly greater than that in the adult. Immunohistochemistry studies using Leu7, galactocerebroside, Rip and adenomatous polyposis coli tumor suppressor protein indicated that most apoptotic cells were cells of the oligodendroglial lineage regardless of the age of the animal. No evidence of Gfap or factor VIII-related antigen-positive apoptotic cells was observed, and there was a small number of apoptotic microglial cells (lectin-Rca1 positive) in the neonatal and adult rat spinal cord. In the neonatal but not adult rat spinal cord, about 10% of the apoptotic cells appeared to be neurons and were immunoreactive for synaptophysin. Labeling indices (LI) for BrdU in nonirradiated 1- and 2-week-old rat spinal cord were 20.0 and 16.3%, respectively, significantly greater than the LI of 1.0% in the 10-week-old rat spinal cord. At 8 h after a single dose of 8 Gy, 13.4% of the apoptotic cells were BrdU-positive in 10-week-old rat spinal cord, whereas 62.4 and 44.1% of the apoptotic cells showed BrdU incorporation in 1- and 2-week-old rat spinal cord, respectively. Regardless of the age of the animal, the apoptosis indices in BrdU-positive cells were greater than those in BrdU-negative cells. We conclude that the neonatal spinal cord demonstrates a greater level of apoptosis after exposure to ionizing radiation than the young adult spinal cord. This increase in apoptosis may be associated in part with the greater percentage of proliferating cells in the neonatal spinal cord, which demonstrate a greater level of radiation-induced apoptosis than nonproliferating cells.  相似文献   

5.
GeneChip analysis after acute spinal cord injury in rat.   总被引:4,自引:0,他引:4  
  相似文献   

6.
An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND) at ~25°C, but it fails in SND genesis at ≤ 10°C. Basal levels of the c-Fos expression in the spinal cords incubated at ≤ 10°C and ~25°C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at ≤ 10°C. However, in the spinal cords incubated at ~25°C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML). Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), or choline acetyltransferase (ChAT). The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs) in the IML. Suppression of SND genesis by tetrodotoxin (TTX) or mecamylamine (MECA, nicotinic receptor blocker) almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression.  相似文献   

7.
There is evidence that in sporadic amyotrophic lateral sclerosis (ALS) immunological mechanisms may be involved in the pathophysiology of the disease. We tested whether purified IgG from ALS patients induce cell death in rat mixed primary spinal cord cultures and compared this with the effect of IgG purified from patients with Guillain-Barré syndrome (GBS) or from healthy donors. Treatment with ALS-IgG increases caspase-3 apoptosis when compared with control IgG or with GBS-IgG, but does not induce death by necrosis. Because ALS is characterized by the selective loss of motor neurones, we next assessed the differential effect of ALS-IgG on motor neurones or astrocytes. We showed, semiquantitatively, that motor neurones are more susceptible to apoptosis when cultures were treated with ALS-IgG compared with control-IgG. In conclusion, we have demonstrated in primary spinal cord cultures that IgG from patients with ALS induces apoptosis selectively in motor neurones, and that the caspase-3 pathway is involved. This suggests that immunological mechanisms may contribute to the selective loss of motor neurones in ALS.  相似文献   

8.
Lumbar spinal cord explants, harvested from neonatal rat pups aged between postnatal day 0 (P0) and P6, were cultured for a period of 48 hrs in the chemically defined medium R(12) on a poly-ethylene-imine (PEI) and on poly-D-lysin (PDL) coated surface. The outgrowth outside the explant was quantified. Lumbar explants from the same rat and embedded in a collagen matrix, and cortical explants from a P0 rat were used as controls. Statistical analysis demonstrated a clear relation between age-at-explantation and the number of neurites in the corona surrounding the explant. The number of outgrowing neurites decreased sharply with age-at-explantation. The average number of neurites per explant obeyed to the expression log (n) = -0.736x + 3.294 on PEI, and log (n) = -0.721x + 2.295 on PDL; x epsilon in [P0 - P6] (n, the number of neurites per explant; x, the age-at-explantation expressed in postnatal days). A similar observed age-related decrease of outgrowth has been described when culturing the lumbar explant inside a collagen matrix. The phenomenon appears to be an intrinsic property of the explant. We review growth inhibitory properties in different models and propose that the phenomenon occurs here at the interface explant-world.  相似文献   

9.
Summary Explants of 10–12 day chick embryo spinal cord were cultured by coverslip-roller tube method for 3–80 days. The cellular and subcellular localization of acetylcholinesterase activity in cultured neurons was studied by the thiocholine techniques of Karnovsky and Roots and Lewis and Shute.At the light microscopic level, acetylcholinesterase was demonstrated in the neurons of both ventral and dorsal horn regions. Occasionally neurons migrated in the outgrowth zone exhibited strong intracellular activity.At the electron microscopic level, acetylcholinesterase activity was found in the nuclear envelope, granular endoplasmic reticulum and the Golgi apparatus of the neurons. No enzyme reaction was detected in the glial cell cytoplasm.  相似文献   

10.
It is now well established that a dynamic balance of neurotransmitters and neuromodulators finely influence the output of neuronal networks and subsequent behaviors. In the present study, to further understand the modulatory processes that control locomotor behavior, we investigated the action of 11 neuropeptides, chosen among the various peptide subfamilies, on the lumbar neuronal network in the in vitro neonatal rat spinal cord preparation. Peptides were bath-applied alone, in combination with N-methyl-D,L-aspartate (NMA) or with the classical 'locomotor cocktail' of NMA and serotonin. Using these different experimental paradigms, we show that each peptide can neuromodulate the lumbar locomotor network and that peptides exhibit different neuromodulatory profiles and potencies even within the same family. Only vasopressin, oxytocin, bombesin and thyrotropin releasing hormone triggered tonic or non-organized rhythmic activities when bath-applied alone. All the neuropeptides modulated NMA induced activity and/ or ongoing sequences of fictive locomotion to varying degrees. These results suggest that neuropeptides play an important role in the control of the neural network for locomotion in the neonatal rat. Their various profiles of action may account in part for the great flexibility of motor behaviors.  相似文献   

11.
W Hoch  H Betz  C M Becker 《Neuron》1989,3(3):339-348
Expression of the inhibitory glycine receptor complex was investigated in primary cultures of fetal mouse spinal cord using sensitive immunomethods. In these cells, glycine receptor is predominantly of the neonatal isoform characterized by a low affinity for the antagonist strychnine. It contains a ligand binding subunit that differs from that of the adult receptor in antigenic epitopes and apparent molecular weight. Whereas in vivo the neonatal receptor isoform is completely replaced by the adult isoform within 3 weeks after birth, this exchange of subtypes is not seen in culture. The increased expression of the cytoplasmic glycine receptor-associated polypeptide of 93 kd occurring after birth is also seen under culture conditions. Purification of glycine receptor from cultures yielded polypeptides of 49 kd and 93 kd, suggesting that the membrane-spanning core of the neonatal receptor may be a homooligomer composed of 49 kd subunits. About half of the 49 kd subunit is cleaved by trypsinization of the cultures, indicating a predominant cell surface localization of the receptor. Pulse-labeling experiments revealed the 49 kd subunit to be a metabolically stable glycoprotein (half-life approximately 2 days). After its synthesis, a transition time of 30-45 min is required for acquisition of a strychnine binding conformation.  相似文献   

12.
We investigated the cellular/subcellular localization and functional expression of P-glycoprotein, an ATP-dependent membrane-associated efflux transporter, in astrocytes, a brain parenchyma compartment that is poorly characterized for the expression of membrane drug transporters. Analyses were carried out on primary cultures of astrocytes isolated from the cerebral cortex of neonatal Wistar rats and CTX TNA2, an immortalized rat astrocyte cell line. Both cell cultures display morphological features typical of type I astrocytes. RT-PCR analysis revealed mdr1a and mdr1b mRNA in primary cultures of astrocytes and in CTX TNA2 cells. Western blot analysis using the P-glycoprotein monoclonal C219 antibody detected a single band of appropriate size in both cell systems. Immunocytochemical analysis using the monoclonal antibodies C219 and MRK16 labeled P-glycoprotein along the plasma membrane, caveolae, coated vesicles and nuclear envelope. Immunoprecipitation studies using the caveolin-1 polyclonal H-97 antibody demonstrated that P-glycoprotein is physically associated with caveolin-1 in both cell culture systems. The accumulation of [(3)H]digoxin (an established P-glycoprotein substrate) by the astrocyte cultures was significantly enhanced in the presence of standard P-glycoprotein inhibitors and an ATP depleting agent. These results demonstrate the cellular/subcellular location and functional expression of P-glycoprotein in rat astrocytes and suggest that this glial compartment may play an important role in the regulation of drug transport in the CNS.  相似文献   

13.
目的:观察脊髓损伤后CSPGs的表达及其与GFAP的关系。方法:成年雄性SD大鼠25只,随机分为对照组和损伤组,损伤组分脊髓挤压损伤后0h、72h、1w、4w组,运用免疫荧光双重染色方法观察CSPGs与GFAP的表达。结果:挤压伤后损伤部位的CSPGs和GFAP的表达均增高,但二者的变化趋势并不一样。其中CSPGs从损伤后表达开始增高,此后一直增加,并在1w至4w时逐渐稳定,主要分布逐渐集中于损伤部位;星形胶质细胞的免疫反应也逐渐增加,其分布逐渐集中于损伤区域的边缘,逐渐形成胶质瘢痕界膜。损伤1w至4w,损伤区域内几乎没有了星形胶质细胞表达,但仍留有大量的CSPGs。结论:早期抑制星形胶质细胞分泌CSPGs,可以防止在损伤部位沉积大量的CSPGs,从而减小其对再生纤维的抑制作用。  相似文献   

14.
Zheng C  Wang MY 《生理学报》2012,64(2):155-162
Descending activation pathways in spinal cord are essential for inducing and modulating autokinesis, but whether the effects of general anesthetic agents on the descending pathways are involved in initiation of skeletal muscle relaxation or not, as well as the underlying mechanisms on excitatory amino acid receptors still remain unclear. In order to explore the mechanisms underlying etomidate's effects on descending activation of spinal cord motoneurons (MNs), the conventional intracellular recording techniques in MNs of spinal cord slices isolated from neonatal rats (7-14 days old) were performed to observe and analyze the actions of etomidate on excitatory postsynaptic potential (EPSP) elicited by electrical stimulation of the ipsilateral ventrolateral funiculus (VLF), which was named VLF-EPSP. Etomidate at 0.3, 3.0 (correspond to clinical concentration) and 30.0 μmol/L were in turn perfused to MN with steadily recorded VLF-EPSPs. At low concentration (0.3 μmol/L), etomidate increased duration, area under curve and/or half-width of VLF-EPSP and N-methyl-D-aspartate (NMDA) receptor-mediated VLF-EPSP component (all P < 0.05), as well as amplitude, area under curve and half-width of non-NMDA receptor-mediated VLF-EPSP component (all P < 0.05), or decreased amplitude and area under curve of VLF-EPSP, its NMDA receptor component, and non-NMDA receptor component (all P < 0.05). However, at 3.0 and 30.0 μmol/L, it was only observed that etomidate exerted inhibitory effects on amplitude and/or duration and/or area under curve of VLF-EPSP (P < 0.05 or P < 0.01) with concentration- and time-dependent properties. Moreover, NMDA receptor-mediated VLF-EPSP component was more sensitive to etomidate at ≥ 3.0 μmol/L than non-NMDA receptor-mediated VLF-EPSP component did. As a conclusion, etomidate, at different concentrations, exerts differential effects on VLF-EPSP and glutamate receptors mediating the synaptic transmission of descending activation of MNs in neonatal rat spinal cord in vitro.  相似文献   

15.
16.
17.
The motor programme executed by the spinal cord to generate locomotion involves glutamate-mediated excitatory synaptic transmission. Using the neonatal rat spinal cord as an in vitro model in which the locomotor pattern was evoked by 5-hydroxytryptamine (5-HT), we investigated the role of N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in the generation of locomotor patterns recorded electrophysiologically from pairs of ventral roots. In a control solution, 5-HT (2.5-30 microM) elicited persistent alternating activity in left and right lumbar ventral roots. Increasing 5-HT concentration within this range resulted in increased cycle frequency (on average from 8 to 20 cycles min-1). In the presence of NMDA receptor antagonism, persistent alternating activity was still observed as long as 5-HT doses were increased (range 20-40 microM), even if locomotor pattern frequency was lower than in the control solution. In the presence of non-NMDA receptor antagonism, stable locomotor activity (with lower cycle frequency) was also elicited by 5-HT, albeit with doses larger than in the control solution (15-40 microM). When NMDA and non-NMDA receptors were simultaneously blocked, 5-HT (5-120 microM) always failed to elicit locomotor activity. These data show that the operation of one glutamate receptor class was sufficient to express locomotor activity. As locomotor activity developed at a lower frequency than in the control solution after pharmacological block of either NMDA or non-NMDA receptors, it is suggested that both receptor classes were involved in locomotor pattern generation.  相似文献   

18.
Clonal evolution in human lymphoblast cultures.   总被引:7,自引:0,他引:7       下载免费PDF全文
We established lymphoblast cultures from normal females heterozygous for electrophoretic variants of glucose-6-phosphate dehydrogenase (G6PD), and the X-linked markers have permitted us to look at evolution of these cell populations in culture. The established cultures were phenotypically heterozygous at onset, having both of the mosaic cell populations resulting from X chromosome inactivation. However, by the tenth subculture, the population of cells no longer reflected the heterozygous genotype in 50% of the cultures, as only a single G6PD isozyme was expressed. The ultimate cell composition seems to be influenced by the initial composition, by the nature of alleles at heterozygous X-linked loci that may provide a growth advantage (or disadvantage), as well as by stochastic events. Our results show that lymphoblast cultures may not reflect the X-linked phenotype of the cells from which they were derived. The fate of such cultures seems to be evolution toward clonal cell populations.  相似文献   

19.
The distribution of substance P (SP)- and somatostatin (SOM)-immunoreactive elements in the spinal cord of the neonatal rat was examined. With few exceptions, the distribution of SP-immunoreactive elements is similar to that described for the adult. A major difference is the obvious presence of SP-immunoreactive fibers in all funiculi of neonatal cords. In addition, an obvious small bundle of longitudinal SP immunoreactive fibers is seen in the base of the dorsal horn at rostral cervical levels. Unlike that of the adult, the neonatal spinal cord shows a widespread distribution of SOM-immunoreactivity. SOM-immunoreactive fibers are present in all funiculi. SOM-immunoreactive perikarya of various shapes and sizes are widely dispersed throughout the gray matter. The cell density is increased in the superficial laminae of the dorsal horn, in a region ventral-lateral to the central canal and in the ventral horn. SOM-immunoreactive varicosities are present in moderate amounts in the superficial laminae of the dorsal horn but are extremely sparse in other regions of the gray matter. A few SOM-immunoreactive fibers course longitudinally at the base of the dorsal horn at rostral levels of the cord. These fibers are found in the same region occupied by the longitudinal SP-immunoreactive fibers referred to above.  相似文献   

20.
A number of studies have investigated the mechanical properties of adult spinal cord under tension, however it is not known whether age has an effect on these properties. This is of interest to those aiming to understand the clinical differences between adults and children with spinal cord injury (e.g. severity and recovery), and those developing experimental or computational models for paediatric spinal cord injury. Entire spinal cords were freshly harvested from neonatal rats (14 days) and tested in vitro under uniaxial tension at a range of strain rates (0.2, 0.02, 0.002/s) to a range of strains (2%, 3.5%, 5%), with relaxation responses being recorded for 15 min. These mechanical properties were compared to previously reported data from similar experiments on adult rat spinal cords, and the peak stress and the stress after 15 min of relaxation were found to be significantly higher for spinal cords from adults than neonates (p<0.001). A non-linear viscoelastic model was developed and was observed to adequately predict the mechanical behaviour of this tissue. The model developed in this study may be of use in computational models of paediatric spinal cord. The significant differences between adult and neonatal spinal cord properties may explain the higher initial severity of spinal cord injury in children and may have implications for the development of experimental animal models for paediatric spinal cord injury, specifically for those aiming to match the injury severity with adult experimental models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号