首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local IgA response is a result of two related events, the induction of sensitized T and B cells in gut- or b ronchial-associated lymphoreticular tissues (GALT or BALT) and the final differentiation of IgA plasma cells in mucosal tissues where IgA is produced and transported to become secretory IgA (S-IgA) antibodies into external secretions. Oral administration of various types of antigens/vaccines may result in two types of response, i.e., S-IgA antibodies at mucosa and systemic unresponsiveness to antigen, a state termed oral tolerance. Regulatory T cells in GALT help account for both S-IgA responses and oral tolerance and thus serve to fine tune responses to orally encountered antigens. Studies in animal models and humans have shown that oral administration of antigens sensitize lymphoid cells in GALT which subsequently home to mucosa and result in S-IgA responses in several external secretions. The significant promise of oral vaccines for prevention of microbial diseases including neisserial diseases is discussed.  相似文献   

2.
猕猴和小鼠分泌片的分离纯化及某些生化特性   总被引:1,自引:0,他引:1  
陈云亮  贲昆龙 《动物学报》1994,40(2):161-168
为了深入了解分泌片和IgA在粘膜免疫系统中的作用,自猕猴和小鼠胆汁中提取和纯化分泌片,SDS-PAGE结果表明猕猴和小鼠游离分泌片的分子量均约为60kDa,但在非解聚型聚丙烯酰胺梯度凝胶电泳时分子量分别为74kDa和62kDa。采用LKB-8100等电聚焦柱测定其PI范围,猕猴分泌片为4.3-5.9,小鼠分泌为3.9-5.4。免疫双扩散证明,猕猴和小鼠胆汁中的分泌片均能与兔抗人分泌片免疫血清发生交  相似文献   

3.
The expression of secretory component (SC), the epithelial receptor for polymeric Ig, was enhanced by the addition of human rIFN-gamma or rIL-4, as revealed by the binding of radiolabeled polymeric, J chain-containing IgA or anti-SC antisera to the human colonic adenocarcinoma epithelial cell line HT-29. In combination, these cytokines exhibited a synergistic effect, and the potentiating effect of IL-4 was inhibitable by polyclonal anti-IL-4 antisera. Because the binding of radiolabeled polymeric IgA (pIgA) to HT-29 cells was inhibited by unlabeled pIgA or a polyclonal anti-SC reagent, but not by IgG, monomeric IgA, or Fab alpha fragments, we conclude that the receptor involved in the increased binding of pIgA is indeed SC. These data suggest that the expression of SC on human epithelial cells and the subsequent binding of pIgA (produced in mucosal tissues and glands by subepithelial plasma cells) is regulated by lymphokines such as IL-4 and IFN-gamma that are presumably derived from T cells found in abundant numbers in these tissues. These findings demonstrate a novel pathway of interaction between T cell products and epithelial cells that may result in enhanced translocation of large amounts of locally produced pIgA through epithelial cells into external secretions.  相似文献   

4.
The transepithelial transport of polymeric immunoglobulins is an essential process in the mucosal immune system. Transport across the epithelial cells of mucous or exocrine glands is affected by an integral membrane glycoprotein receptor known as membrane secretory component (SCm) or as polymeric immunoglobulin receptor (pIgR). This receptor binds polymeric immunoglobulins at the basolateral cell surface and mediates their transcellular translocation and their release from the apical plasma membrane into external secretions. Release depends on cleavage of the membrane-anchoring domain of the receptor, resulting in liberation of polymeric immunoglobulin bound to the ectoplasmic domain of the receptor (secreted SC or SCs) into extracellular secretions. Using a monoclonal antibody directed against the cytoplasmic tail of the receptor and a polyclonal antibody directed against the secreted ectoplasmic domain, we have combined cell fractionation and Western blotting techniques to examine the fate of these receptor domains in the hepatocyte. In this study, we characterize biochemically and morphologically the various subcellular components separated by our fractionation scheme, and correlate this with biochemical analysis of the receptor in each fraction.  相似文献   

5.
E L Parr  M B Parr 《Journal of virology》1997,71(11):8109-8115
We investigated the protective role of antibodies in vaginal secretions of mice that were immune to vaginal challenge with herpes simplex virus type 2 (HSV-2). Unfractionated vaginal immunoglobulins from immune and nonimmune mice and affinity-purified immunoglobulin G (IgG) and secretory IgA (S-IgA) from immune secretions were adjusted to their concentrations in vivo. Wild-type HSV-2 was incubated in the immunoglobulin preparations for 15 min in vitro, followed by inoculation into vaginae of nonimmune mice. HSV-2 was neutralized by unfractionated antibody and purified IgG from immune secretions but not by unfractionated nonimmune antibody or by purified immune S-IgA. The protective effect of IgG in vivo was investigated by passively transferring purified serum IgG from immune and nonimmune donors to nonimmune recipients before vaginal challenge infection. Immune IgG significantly reduced the percentage of vaginal epithelium infected, concentrations of shed virus protein in the vaginal lumen, and illness scores, even though the viral antibody titers in serum and vaginal secretions of recipient mice at the time of challenge were only 29 and 8%, respectively, of those in actively immunized mice. Additionally, removal of vaginal secretions from immune mice 10 min before vaginal challenge with HSV-2 significantly increased the concentration of shed virus protein in the vaginal lumen after challenge. Collectively, the data indicate that IgG antibody in vaginal secretions of immune mice provides early protection against vaginal challenge infection, probably by neutralizing virus in the vaginal lumen. In contrast, S-IgA antibody contributed relatively little to immune protection of the vagina.  相似文献   

6.
Sex steroid hormones are known to have profound effects on mucosal immunity. In the present study we evaluated the effects of progesterone on the uterine immune system by determining the changes in the levels of secretory component (SC) released from uterine tissues in culture following in vivo administration of progesterone to estradiol-stimulated ovariectomized rats. SC is a transport protein which moves IgA into external secretions such as intestinal and uterine secretions. SC release was determined by radioimmunoassay of the culture medium collected 24 h after introduction of uterine tissues into medium with or without cycloheximide. The net production of SC was reduced following progesterone administration. Reduction in SC levels followed a dose dependency and occurred irrespective of whether the progesterone was given before or during treatment with estradiol. These results support the hypothesis that progesterone plays a direct role in suppression of uterine SC production and release.  相似文献   

7.
Human secretory component (SC) is associated with secretory immunoglobulins (IgA and IgM) and serves to protect the immunoglobulin in the harsh mucosal environment. SC is derived from the polymeric immunoglobulin receptor (pIgR) which transports polymeric immunoglobulins across epithelial cells into secretions. In this present study, we describe the first cloning, expression, in vitro refolding and purification of a free form of human secretory component (rSC) containing the five functional ligand binding domains using Escherichia coli BL21 (DE3). Free rSC was refolded from inclusion bodies by equilibrium dialysis after purification by nickel affinity chromatography under denaturing conditions. Refolded rSC was purified by gel filtration chromatography. Surface plasmon resonance and dot blot association analysis have shown that purified rSC binds IgM with a physiological equilibrium dissociation constant (KD) of 4.6x10(-8) M and shares structural similarity to native SC. This provides an important step in the elucidation of the structure of this immunologically important receptor.  相似文献   

8.
Transcytosis of polymeric immunoglobulin (pIg) across glandular and mucosal epithelia is mediated by a member of the immunoglobulin supergene family, the pIg receptor. During transcellular routing, the receptor is cleaved and its ectoplasmic domain, known as secretory component (SC), is released into secretions bound to pIg. Using receptor-domain-specific antibodies, we have combined cell fractionation and immunoblotting of rat liver to examine the cellular routing of the receptor, the cellular location of the cleavage event and the fate of the anchor domain. Cleavage is a late event in receptor processing. It appears to occur at the canalicular plasma membrane, since intact receptor is present in this membrane domain and no SC is detected in whole liver homogenate or in cell fractions. The membrane anchor remaining after cleavage can be recovered in bile, as well as in a low-density fraction obtained after equilibrium centrifugation of liver (microsomal fractions) on sucrose density gradients. These data suggest that the membrane-anchor domain may be internalized as well as secreted together with SC into bile.  相似文献   

9.
10.
Secretory component (SC), an integral membrane protein expressed on basolateral surfaces of secretory epithelial cells, mediates the transport of polymeric Ig (PIg) into external secretions. The ectoplasmic segment of SC is released into secretions either in a free form (FSC) or bound to PIg as secretory IgA or IgM. The topography of human SC in its free and PIgA-bound form was studied by using mAb directed against each form of SC. Competition experiments identified a minimum of nine SC epitopes, one of which was dependent on an N-glycosidic moiety. Three of the polypeptide-derived epitopes were displayed on denatured, reduced, and alkylated SC, whereas the others were fully or partially dependent on the native conformation of SC. Epitopes recognized by the latter class of antibodies were mapped to discrete domains of SC, based on amino acid sequence and antibody-binding analysis of limited proteolytic fragments. One of the mAb (6G11), which was directed against an epitope on domain I of SC, inhibited the binding of FSC to PIgA. Overall, our results provide evidence that a region within domain I, as well as protease-sensitive interdomain regions of FSC, become masked or altered when SC binds to PIgA. Furthermore, the binding of SC to PIgA results in conformational changes, or formation of combinatorial epitopes, involving regions within domains II and III of SC but not domain V.  相似文献   

11.
Summary With the marker of Paneth cells-lysozyme, secretory component (SC) immunoreactivity was demonstrated exclusively in Paneth cells of rat small intestine. The other types of epithelial cells (columnar, goblet, endocrine) were negative. On electron microscopic level, many SC-positive colloidal gold particles were found in rough endoplasmic reticulum, Golgi complexes, basal membrane and secretory granules of Paneth cells. These results suggest that SC is not a component of ingested immune complex, but a membrane receptor on Paneth cell. It may function as receptor for polymeric IgA and mediate its transport across the mucosal epithelium. Thus, Paneth cells are responsible for SC synthesis and participate in IgA-mediated acquired immunity in rat small intestine.  相似文献   

12.
分泌型IgA (SIgA) 在机体的粘膜免疫中具有重要作用,在外分泌道中比单体IgA和IgG抗体具有更好的抗感染活性。为了表达抗禽流感病毒H5N1人-鼠嵌合分泌型IgA抗体,首先以本室先前构建的稳定表达IgA的中国仓鼠卵巢细胞 (CHO) 细胞系为基础,共转染分泌片和J链表达质粒,然后用抗生素Zeocin选择阳性克隆细胞,利用倍比稀释的方法筛选分泌SIgA的单克隆细胞,通过Western blotting分析培养上清中SIgA的表达情况。结果表明,在CHO细胞中成功表达了SIgA抗体,上述研究为研制分泌型  相似文献   

13.
In mucosal secretions, secretory component (SC) is found either free or bound to polymeric IgA within the secretory IgA complex. SC displays numerous and various glycans, which are potential ligands for bacterial compounds. We first established that human SC (hSC) purified from colostrum (hSCcol) or produced in Chinese hamster ovary cells (hSCrec) exhibits the same lectin reactivity. Both forms bind to Clostridium difficile toxin A and functionally protect polarized Caco-2 cell monolayers from the cytopathic effect of the toxin. The interaction is mediated by glycans present on hSC and involves galactose and sialic acid residues. hSCcol and hSCrec were also shown to bind enteropathogenic Escherichia coli adhesin intimin and to inhibit its infectivity on HEp-2 cells in a glycan-dependent manner as well. SC remained operative in the context of the whole secretory IgA molecule and can therefore enhance its Fab-mediated neutralizing properties. On the contrary, hSC did not interact with three different strains of rotavirus (RF, RRV, and SA11). Accordingly, infection of target MA104 cells with these rotavirus strains was not reduced in the presence of either form of hSC tested. Although not a universal mechanism, these findings identify hSC as a microbial scavenger contributing to the antipathogenic arsenal that protects the body epithelial surfaces.  相似文献   

14.
Recombinant interferon-gamma (IFN-gamma) increased in a dose-dependent manner the intracellular pool, the membrane expression, and the shedding of secretory component (SC) in human colonic adenocarcinoma cell line (HT-29). A similar dose-response relationship was observed when we examined the binding of polymeric IgA to HT-29 cells treated with IFN-gamma, thus reflecting expression of functional SC. Because IFN-gamma is produced by T cells during immune responses, activated T cells may be able to promote the external transport of dimeric IgA and pentameric IgM and thereby enhance the efferent limb of the secretory immune system. This is, therefore, the first observation indicating how the secretory transport capacity may be adjusted to increased local immunoglobulin production.  相似文献   

15.
The present studies were conducted to compare the levels of free secretory component (SC) in a number of rat mucosal secretions and to determine whether SC content varies significantly during the four stages of the estrous cycle. Levels of SC, as measured by radioimmunoassay, were markedly different in various external secretions. Bile contained the highest amount, irrespective of whether SC was normalized to volume or protein. Concentrations of SC in saliva or uterine fluid from intact rats were approximately 20- to 30-fold less than measured in bile. When SC levels were normalized to protein, the SC to protein ratios in uterine, vaginal, and respiratory secretions were six to 18 times greater than values calculated in salivary and small intestinal fluids. Analysis of SC levels in mucosal secretions during the estrous cycle indicated significant variations occur in uterine and vaginal samples, but not in saliva or small intestinal secretions. In the uterine lumen, SC levels were highest at proestrus, partially elevated at estrus, and lowest at both days of diestrus. In contrast, vaginal SC levels were maximal at estrus and reduced at all other stages of the cycle. Immunoglobulin A content was also measured in uterine and vaginal secretions during the estrous cycle. Significant changes in IgA levels were found and these coincided with the changing pattern of SC. These results suggest hormones may modulate SC levels in reproductive tissues. In addition, our findings indicate variations in SC during the estrous cycle may direct the movement of IgA from tissue to lumen.  相似文献   

16.
Induced protection mechanisms at mucosal surfaces involve secretory IgA (SIgA), a complex structure made of polymeric-dimeric IgA (IgA(p/d)) antibody associated with secretory component (SC). SIgA can adhere to M cells of the intestinal and nasal epithelia, are transported across these latter, and are thus available to the immune cells underlying the epithelia. This property makes SIgA suitable as potential mucosal vaccine delivery vector. It remains that production and purification of SIgA is a complex task since IgA(p/d) and SC are naturally synthesized by two different cell types. Furthermore, only IgA(p/d) are capable to associate with SC. Thus, we sought to separate IgA(p/d) and monomeric IgA (IgA(m)) antibodies secreted by hybridoma cells in CELLine bioreactors. To this aim, we connected together two 1-m long columns filled with Sephacryl S-300 beads and placed them under the control of a automatized chromatographic system. In parallel, we produced recombinant antigenized human SC (ra-hSC) in Chinese hamster ovary (CHO) cells adapted to suspension culture in CELLine bioreactors. To avoid intermediate purification of ra-hSC, culture supernatants (SN) containing this latter were combined with purified IgA(p/d), and the recombinant antigenized SIgA (raSIgA) complex was resolved on a 1-m long column filled with Superdex 200 beads. Biochemical characterization based on SDS-PAGE, silver staining, immunodetection and enzyme-linked immunosorbent assay (ELISA) indicates that highly purified raSIgA can be recovered using this simple two-step procedure. Such preparations are currently used to immunize mice to induce mucosal and systemic responses.  相似文献   

17.
大部分感染都起源于黏膜表面,而黏膜免疫的主要抗体是分泌型免疫球蛋白A(SIgA),它能有效地阻断病原体的感染和侵入。SIgA是由1个IgA二聚体、1条J链和1个分泌片(SC)共价结合构成的异源十聚体。IgA和J链由活化B细胞产生,SC则由黏膜上皮细胞合成。SIgA分子具有极高的稳定性和极强的抗微生物活性。我们就SIgA合成的相关机制、IgA单体和SIgA的结构与功能,以及重组SIgA的研究进展简要综述。  相似文献   

18.
Intrauterine immunization of ovariectomized rats with SRBC is known to elicit pronounced IgA and IgG antibody responses in uterine secretions of immunized uteri. To determine whether secretory component (SC), the receptor for transporting polymeric IgA from tissues to mucosal surfaces, was also influenced by Ag, ovariectomized rats were immunized and boosted by placing SRBC into the lumena of individual uterine horns. In response to Ag, the levels of polymeric IgA, as well as free SC and SC bound to polymeric IgA, increased in uterine secretions. When ovariectomized animals were treated with estradiol, a fivefold increase in SC levels was observed in the immunized horns, indicating that a hormone response is superimposed on the Ag-induced stimulation of uterine SC. To determine whether IFN-gamma influences the presence of SC in uterine secretions, IFN-gamma was placed in the uterine lumena of ovariectomized nonimmunized rats. When uterine secretions were analyzed, significantly higher levels of SC were found in IFN-gamma-exposed uteri than were present in saline treated control animals. In contrast, intrauterine instillation of IFN-gamma had no effect on the levels of IgA in uterine secretions. This response was specific for IFN-gamma in that IFN-alpha/beta had no effect on uterine SC or IgA levels. These results indicate that intrauterine instillation of Ag, in addition to evoking pronounced antibody responses, stimulates the production of SC, which may be responsible for the transport of polymeric IgA from tissue to uterine secretions. Furthermore, they indicate that IFN-gamma placed in the uterine lumen stimulates SC production and suggest that the uterine SC response to Ag may be mediated by the action of IFN-gamma on uterine epithelial cells.  相似文献   

19.
A homologue of a free secretory component (SC) was identified in chicken intestinal secretion by criteria based on its antigenic relationship with intestinal secretory IgA (SIgA), molecular size, sugar content, and electrophoretic mobility, as well as its elution characteristic from ion-exchange chromatography. SC was obtained in a form free from IgA from the intestinal secretion by salting out and DEAE chromatography, followed by density ultracentrifuguation or Sephadex G-200 gel-filtration. However, the free SC revealed some antigenic deficiency when compared to bound SC of intestinal SIgA and showed a failure of binding to serum-type-polymeric IgA of biliary IgA in vitro. Several kinds of chicken external secretions were examined for detection of SC and immunoglobulin classes of IgG, IgA, and IgM. In spite of the wide distribution of immunoglobulins in the external secretions, SC antigen could be detected only in intestinal secretion. Most IgA in the secretions had a molecular structure of a tetramer of serum-type IgA, lacking in SC and having 17S to 18.5S and 600,000 to 700,000 daltons. On the other hand, IgA in the intestinal secretion showed close similarity to the mammalian SIgA, associated with SC and having 11.2S and 350,000 daltons. Presence of antibody activity in the intestinal IgA to avian reovirus was confirmed by plaque reduction tests.  相似文献   

20.
Reovirus type 1 Lang (T1L) infects the mouse intestinal mucosa by adhering specifically to epithelial M cells and exploiting M-cell transport to enter the Peyer's patches. Oral inoculation of adult mice has been shown to elicit cellular and humoral immune responses that clear the infection within 10 days. This study was designed to determine whether adult mice that have cleared a primary infection are protected against viral entry upon oral rechallenge and, if so, whether antireovirus secretory immunoglobulin A (S-IgA) is a necessary component of protection. Adult BALB/c mice that were orally inoculated on day 0 with reovirus T1L produced antiviral S-IgA in feces and IgG in serum directed primarily against the reovirus sigma1 attachment protein. Eight hours after oral reovirus challenge on day 21, the Peyer's patches of previously exposed mice contained no detectable virus whereas Peyer's patches of naive controls contained up to 2,300 PFU of reovirus/mg of tissue. Orally inoculated IgA knockout (IgA(-/-)) mice cleared the initial infection as effectively as wild-type mice and produced higher levels of reovirus-specific serum IgG and secretory IgM than C57BL/6 wild-type mice. When IgA(-/-) mice were rechallenged on day 21, however, their Peyer's patches became infected. These results indicate that intestinal S-IgA is an essential component of immune protection against reovirus entry into Peyer's patch mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号