首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
The frequency of resistance genotypes among Beijing and non-Beijing strains was compared using a reverse blot hybridization assay to detect mutations within genes associated with rifampicin (rpoB) and isoniazid (katG, inhA, and ahpC) resistance. Of the 743 Mycobacterium tuberculosis isolates, 569 (77%) belonged to Beijing family. The proportion of Beijing strains was significantly higher among MDR-TB isolates than among drug-susceptible strains (82% vs. 72%, p<0.01). Genotype analysis of the rpoB gene revealed significantly lower rates of the Ser531Leu mutation rate among Beijing vs. non-Beijing MDR-TB strains (41% vs. 66%, p<0.005). While the mutation for Ser315Thr in the katG gene was more common among Beijing vs. non-Beijing family strains (65% vs. 50%, p<0.01), the mutation rate of promoter region of the inhA gene was lower among Beijing strains compared with non-Beijing strains (14% vs. 25%, p<0.05). Reverse hybridization successfully detected over 80% of isoniazid-resistant strains and over 92% of rifampicin-resistant strains among Korean isolates. Significant differences in mutation rates in the rpoB, katG, and inhA genes between Beijing strains and non-Beijing strains could explain discrepancies in mutation rates of genotypes in different countries. Reverse hybridization was useful for rapid detection of isoniazid and rifampicin resistant strains.  相似文献   

2.
[目的]苏云金素(Thuringiensin)的合成和代谢途径的相关研究在国内外一直进展缓慢,本文拟从蛋白质组水平揭示与苏云金素合成或代谢相关的蛋白.[方法]利用双向电泳技术研究了高产苏云金素的苏云金芽胞杆菌野生菌株CT-43、其高产突变菌株CT-43-1C及不产突变菌株BMB0806在蛋白表达水平的差异,然后对差异蛋白点进行质谱鉴定,最后对鉴定出的蛋白进行生物信息学分析.[结果]与野生型和高产菌株相比,在BMB0806中发现了13个差异显著的蛋白点,鉴定出了其中的9个,生物信息学结果显示有6个蛋白可能与苏云金素合成或代谢相关.[结论]通过蛋白质组研究找到了6个可能与苏云金素合成或代谢相关的蛋白,为苏云金素合成基因簇的克隆和合成途径的验证提供了有力的证据.  相似文献   

3.
The therapeutic mainstay against the protozoan parasite Leishmania is still based on the antiquated pentavalent antimonials, but resistance is increasing in several parts of the world. Resistance is now partly understood in laboratory promastigote isolates, but the mechanism leading to drug resistance in amastigote isolates is lagging behind. Here we describe a comparative proteomic analysis of a genetically related pair of antimonial-sensitive and -resistant Leishmania infantum axenic amastigote strains. The proteomics screen has highlighted a number of proteins differentially expressed in the resistant parasite. The expression of the protein argininosuccinate synthetase (ARGG) was increased in the drug resistant mutant while a decrease in the expression of the kinetoplastid membrane protein (KMP-11) correlated with the drug resistance phenotype. This proteomic screen highlighted several novel proteins that are putatively involved in resistance to antimonials.  相似文献   

4.
During the last years in Novosibirsk region of Russia the rate of TB patients infected by MDR strains of M. tuberculosis has been constantly increasing. This increase may occur as a result of the spontaneously mutated mycobacterium selection during treatment of patients or as a result of primary infection by the resistant M. tuberculosis, or also, as a result of both reasons in combination. If the main reason of MDR strain dissemination is selection of resistant bacterium during patient treatment, the equal apportionment of the dominated mutation into the mycobacterium genotypes would be observed. If the main reason is the primary infection by resistant M. tuberculosis, the unequal apportionment would be revealed. For deeper understanding of the main reasons of the fast MDR strains spreading in the region, the distribution of the main mutations over genotypes of strains in Novosibirsk (170 isolates) and Tomsk prison (51 isolates) was investigated. Mutations in rpoB gene associated with the rifampicin resistance and in katG (isoniazid resistance) were detected by biochips. M. tuberculosis genotypings were carried out by IS6110 PCR typing or MIRU typing, in the last method the twelve loci (MIRU 2, 4, 10, 16, 20, 23, 24, 26, 27, 31, 39, 40) have been used. The most frequent mutation in the rpoB gene was Ser531-->Leu (60-70% of the rifampicin resistant strains) and Ser315-->Thr in gene katG (80% of the isoniazid resistant M. tuberculosis). Both in Novosibirsk and in Tomsk prison the rates of clustered cases transmissions were high (69 and 63% respectively). Analysis of the distribution of the dominated mutations Ser531-->Leu (rpoB) and Ser315-->Thr (katG) revealed that all of them were detected in each clusters, but in Novosibirsk there were only two clusters, in which the percentage of strains, containing mutation Ser531-->Leu (rpoB) were higher (85.7% and 77.7% respectively, P < 0.05), then in others. Among the Tomsk prison's clusters it was revealed one in which the proportion of the Ser3 15-->Thr mutation in katGwas higher (96.4%, P < 0.05). The nonuniform distribution of the dominated mutations highlighted that the epidemic spread of drug-resistant strains of M. tuberculosis in region resulted from the selection of them during patient treatment and the subsequent transmission by TB patients.  相似文献   

5.
Antimicrobial resistance was studied in 100 Mycobacterium tuberculosis strains selected randomly from sputum cultures of newly diagnosed tuberculosis patients. Resistance of the isolates to rifampicin, isoniazid, and ethambutol was tested by both drug susceptibility testing (DST) and allele-specific PCR (AS-PCR). A total of 19 (19%) isolates were found resistant to at least one of the antituberculosis drugs investigated by PCR compared with 14 (14%) resistant isolates detected by DST. Eleven mutations were detected by AS-PCR in the rpoB gene (codons 516, 526, and 531), associated with rifampicin resistance, a marker of multidrug-resistant tuberculosis (MDR-TB), 14 mutations in the katG gene codon 315 that confers resistance to isoniazid, and nine mutations in the embB gene codon 306 that confers resistance to ethambutol. Mutations in the six multidrug-resistant isolates were confirmed by DNA sequencing. Results were compared with phenotypic DST data. Nineteen different mutation types to at least one of the drugs were found; six isolates (6%) were classified as MDR-TB, defined as resistance to at least rifampicin and isoniazid. The rates of concordance of the PCR with the phenotypic susceptibility test were 71.4, 54.5, and 44.4 for isoniazid, rifampicin, and ethambutol, respectively. These results highlight the importance of molecular epidemiology studies of tuberculosis in understudied regions with a tuberculosis burden to uncover the true prevalence of the MDR-TB.  相似文献   

6.
目的 研究抗酸染色结核分枝杆菌(简称结核杆菌)阳性痰涂片标本直接用于耐药性检测的方法。方法 对18株临床分离培养的结核杆菌用利福平进行药敏试验。分别提取菌株DNA和与之对应的痰涂片标本的菌体DNA,用聚合酶链反应(PcR)扩增ropB基因后进行固相杂交和核酸测序检测结核杆菌的耐药性。结果 18株结核杆菌中有12株对利福平耐药。经PCR扩增的ropB片段与探针杂交后,敏感菌株未发现rpoB基因的突变,自耐药菌株提取的DNA中rpoB突变体的检出率为100%(12/12),痰涂片提取DNA的检出率为91.7%(11/12)。所有耐药菌株DNA与痰涂片DNA核酸测序结果相吻合,都有rpoB基因核心区域碱基突变。结论 抗酸染色痰涂片阳性标本可直接用于检测结核杆菌利福平耐药基因rpoB突变体,是一种值得临床实验室推广使用的耐药菌诊断方法。  相似文献   

7.
The rpoB gene encoding the beta subunit of the DNA-dependent RNA polymerase was molecularly characterized by PCR amplification and DNA sequencing in 26 Brucella reference strains by using primers selected according to the B. melitensis 16 M rpoB published sequence. Comparison of the rpoB nucleotide sequence of all Brucella strains analysed revealed specific nucleotide variations associated with different Brucella species and biovars. 17 rpoB alleles were recognized and new Brucella typing is proposed. Our results suggest that the rpoB gene polymorphism can be used to identify all Brucella species and most of the biovars, offering an improvement over conventional typing methods.  相似文献   

8.
Mosquito control based on chemical insecticides is considered as an important element of the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. In contrast to target site resistance, other mechanisms are far from being fully understood. Global protein profiles among cypermethrin-resistant, propoxur-resistant, dimethyl-dichloro-vinyl-phosphate-resistant and susceptible strain of Culex pipiens pallens were obtained and proteomic differences were evaluated by using isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography/tandem mass spectrometric analysis. A susceptible strain of Culex pipiens pallens showed elevated resistance levels after 25 generations of insecticide selection, through iTRAQ data analysis detected 2,502 proteins, of which 1,513 were differentially expressed in insecticide-selected strains compared to the susceptible strain. Finally, midgut differential protein expression profiles were analyzed, and 62 proteins were selected for verification of differential expression using iTRAQ and parallel reaction monitoring strategy, respectively. iTRAQ profiles of adaptation selection to three insecticide strains combined with midgut profiles revealed that multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Culex pipiens pallens. Significant molecular resources were developed for Culex pipiens pallens, potential candidates were involved in metabolic resistance and reducing penetration or sequestering insecticide. Future research that is targeted towards RNA interference of the identified metabolic targets, such as cuticular proteins, cytochrome P450s, glutathione S-transferases and ribosomal proteins proteins and biological pathways (drug metabolism—cytochrome P450, metabolism of xenobiotics by cytochrome P450, oxidative phosphorylation, ribosome) could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Culex pipiens pallens.  相似文献   

9.
We evaluated the mutations in a 193bp of the rpoB gene by automated sequencing of rifampicin (RMP)-resistant and susceptible Mycobacterium tuberculosis strains isolated from Brazil (25 strains) and France (37 strains). In RMP-resistant strains, mutations were identified in 100% (16/16) from France and 89% (16/18) from Brazil. No mutation was detected in the 28 RMP-susceptible strains. Among RMP-resistant or RMP-susceptible strains deletion was observed. A double point mutation which had not been reported before was detected in one strain from France. Among French resistant strains mutations were found in codons 531 (31.2%), 526, 513 and 533 (18.7% each). In Brazilian strains the most common mutations were in codons 531 (72.2%), 526 (11.1%) and 513 (5.5%). The heterogeneity found in French strains may be related to the fact that most of those strains were from African or Asian patients.  相似文献   

10.
P. Zawadzki  F. M. Cohan 《Genetics》1995,141(4):1231-1243
We investigated the size and continuity of DNA segments integrated in Bacillus subtilis transformation. We transformed B. subtilis strain 1A2 toward rifampicin resistance (coded by rpoB) with genomic DNA and with a PCR-amplified 3.4-kb segment of the rpoB gene from several donors. Restriction analysis showed that smaller lengths of donor DNA integrated into the chromosome with transformation by PCR-amplified DNA than by genomic DNA. Nevertheless, integration of very short segments (<2 kb) from large, genomic donor molecules was not a rare event. With PCR-amplified segments as donor DNA, smaller fragments were integrated when there was greater sequence divergence between donor and recipient. There was a large stochastic component to the pattern of recombination. We detected discontinuity in the integration of donor segments within the rpoB gene, probably due to multiple integration events involving a single donor molecule. The transfer of adaptations across Bacillus species may be facilitated by the small sizes of DNA segments integrated in transformation.  相似文献   

11.

Background

Tuberculosis is a growing international health concern. It is the biggest killer among the infectious diseases in the world today. Early detection of drug resistance allows starting of an appropriate treatment. Resistance to drugs is due to particular genomic mutations in specific genes of Mycobacterium tuberculosis(MTB). The aim of this study was to identify the presence of Isoniazid (INH) and Rifampicin(RIF) drug resistance in new and previously treated tuberculosis (TB) cases using DNA sequencing.

Methods

This study was carried out on 153 tuberculous patients with positive Bactec 460 culture for acid fast bacilli.

Results

Of the 153 patients, 105 (68.6%) were new cases and 48 (31.4%) were previously treated cases. Drug susceptibility testing on Bactec revealed 50 resistant cases for one or more of the first line antituberculous. Genotypic analysis was done only for rifampicin resistant specimens (23 cases) and INH resistant specimens (26 cases) to detect mutations responsible for drug resistance by PCR amplification of rpoB gene for rifampicin resistant cases and KatG gene for isoniazid resistant cases. Finally, DNA sequencing was done for detection of mutation within rpoB and KatG genes. Genotypic analysis of RIF resistant cases revealed that 20/23 cases (86.9%) of RIF resistance were having rpoB gene mutation versus 3 cases (13.1%) having no mutation with a high statistical significant difference between them (P < 0.001). Direct sequencing of Kat G gene revealed point mutation in 24/26 (92.3%) and the remaining 2/26 (7.7%) had wild type KatG i.e. no evidence of mutation with a high statistical significant difference between them (P < 0.001).

Conclusion

We can conclude that rifampicin resistance could be used as a useful surrogate marker for estimation of multidrug resistance. In addition, Genotypic method was superior to that of the traditional phenotypic method which is time-consuming taking several weeks or longer.  相似文献   

12.
Binding of the Bacillus thuringiensis Cry1Ac toxin to specific receptors in the midgut brush border membrane is required for toxicity. Alteration of these receptors is the most reported mechanism of resistance. We used a proteomic approach to identify Cry1Ac binding proteins from intestinal brush border membrane (BBM) prepared from Heliothis virescens larvae. Cry1Ac binding BBM proteins were detected in 2D blots and identified using peptide mass fingerprinting (PMF) or de novo sequencing. Among other proteins, the membrane bound alkaline phosphatase (HvALP), and a novel phosphatase, were identified as Cry1Ac binding proteins. Reduction of HvALP expression levels correlated directly with resistance to Cry1Ac in the YHD2-B strain of H. virescens. To study additional proteomic alterations in resistant H. virescens larvae, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) to compare three independent resistant strains with a susceptible strain. Our results validate the use of proteomic approaches to identify toxin binding proteins and proteome alterations in resistant insects.  相似文献   

13.
The proteomic profiles of primary needles from Cr2-resistant and cr2-susceptible Pinus monticola seedlings were analysed post Cronartium ribicola inoculation by 2-DE. One hundred-and-five protein spots exhibiting significant differential expression were identified using LC–MS/MS. Functional classification showed that the most numerous proteins are involved in defence signalling, oxidative burst, metabolic pathways, and other physiological processes. Our results revealed that differential expression of proteins in response to C. ribicola inoculation was genotype- and infection-stage dependent. Responsive proteins in resistant seedlings with incompatible white pine blister rust (WPBR) interaction included such well-characterized proteins as heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, and intermediate factors functioning in the signal transduction pathways triggered by well-known plant R genes, as well as new candidates in plant defence like sugar epimerase, GTP-binding proteins, and chloroplastic ribonucleoproteins. Fewer proteins were regulated in susceptible seedlings; most of them were in common with resistant seedlings and related to photosynthesis among others. Quantitative RT-PCR analysis confirmed HSP- and ROS-related genes played an important role in host defence in response to C. ribicola infection. To the best of our knowledge, this is the first comparative proteomics study on WPBR interactions at the early stages of host defence, which provides a reference proteomic profile for other five-needle pines as well as resistance candidates for further understanding of host resistance in the WPBR pathosystem.  相似文献   

14.
Lumbar spinal stenosis (LSS) is a syndromic degenerative spinal disease and is characterized by spinal canal narrowing with subsequent neural compression causing gait disturbances. Although LSS is a major age‐related musculoskeletal disease that causes large decreases in the daily living activities of the elderly, its molecular pathology has not been investigated using proteomics. Thus, we used several proteomic technologies to analyze the ligamentum flavum (LF) of individuals with LSS. Using comprehensive proteomics with strong cation exchange fractionation, we detected 1288 proteins in these LF samples. A GO analysis of the comprehensive proteome revealed that more than 30% of the identified proteins were extracellular. Next, we used 2D image converted analysis of LC/MS to compare LF obtained from individuals with LSS to that obtained from individuals with disc herniation (nondegenerative control). We detected 64 781 MS peaks and identified 1675 differentially expressed peptides derived from 286 proteins. We verified four differentially expressed proteins (fibronectin, serine protease HTRA1, tenascin, and asporin) by quantitative proteomics using SRM/MRM. The present proteomic study is the first to identify proteins from degenerated and hypertrophied LF in LSS, which will help in studying LSS.  相似文献   

15.
The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and carboxylesterases. Taken together these results provide evidence that both target-site and metabolic mechanisms underlie the resistance of S. frugiperda to pyrethroids and organophosphates.  相似文献   

16.
The efficiency of tuberculosis control programs is largely determined by methods for rapid diagnosis of the agent. In comparison with the traditional methods, new molecular technologies for characterization of mycobacteria appear to be more promising, because the result can be obtained in almost no time. Sixty-five strains of M. tuberculosis isolated in various regions of Russia were investigated. Drug resistance and strain appurtenance of this sample were determined by classical (absolute concentrations method, IS6110-RFLP) and modern molecular genetic methods (detection of mutations in rpo B gene, DRE-PCR). The spectrum of mutations of the rpoB gene associated with rifampicin resistance was evaluated by direct sequencing. Mutations involving codons 531 (62.7%), 526 (18.6%), and 516 (10.2%) of rpoB gene predominated in the studied sample. The studied strains were discriminated into 52 individual strains by IS6110-RFLP and DRE-PCR typing. Analysis of the resultant genetic variants showed the predominance of M. tuberculosis family W. The efficiency of combined approach to screening for M. tuberculosis is discussed.  相似文献   

17.
Mutations in rpoB (RNA polymerase β-subunit) can cause high-level resistance to rifampicin, an important first-line drug against tuberculosis. Most rifampicin-resistant (Rif(R)) mutants selected in vitro have reduced fitness, and resistant clinical isolates of M. tuberculosis frequently carry multiple mutations in RNA polymerase genes. This supports a role for compensatory evolution in global epidemics of drug-resistant tuberculosis but the significance of secondary mutations outside rpoB has not been demonstrated or quantified. Using Salmonella as a model organism, and a previously characterized Rif(R) mutation (rpoB R529C) as a starting point, independent lineages were evolved with selection for improved growth in the presence and absence of rifampicin. Compensatory mutations were identified in every lineage and were distributed between rpoA, rpoB and rpoC. Resistance was maintained in all strains showing that increased fitness by compensatory mutation was more likely than reversion. Genetic reconstructions demonstrated that the secondary mutations were responsible for increasing growth rate. Many of the compensatory mutations in rpoA and rpoC individually caused small but significant reductions in susceptibility to rifampicin, and some compensatory mutations in rpoB individually caused high-level resistance. These findings show that mutations in different components of RNA polymerase are responsible for fitness compensation of a Rif(R) mutant.  相似文献   

18.
19.
Three new rif-r-mutations, obtained independently, were localized in the rpoB gene coding for the beta-subunit of DNA-dependent RNA polymerase of E. coli. Two of them led to identical Asp(516)-Asn amino acid substitution with relatively low resistance of corresponding E. coli strains to rifampicin. The third mutation affected the His 526 residue transforming it into Tyr and endowed the E. coli cells with a high resistance against rifampicin.  相似文献   

20.
Quantitative polymerase chain reaction-high-resolution melting (qPCR-HRM) analysis was used to screen for mutations related to drug resistance in Mycobacterium tuberculosis. We detected the C526T and C531T mutations in the rifampicin resistance-determining region (RRDR) of the rpoB gene with qPCR-HRM using plasmid-based controls. A segment of the RRDR region from M. tuberculosis H37Rv and from strains carrying C531T or C526T mutations in the rpoB were cloned into pGEM-T vector and these vectors were used as controls in the qPCR-HRM analysis of 54 M. tuberculosis strains. The results were confirmed by DNA sequencing and showed that recombinant plasmids can replace genomic DNA as controls in the qPCR-HRM assay. Plasmids can be handled outside of biosafety level 3 facilities, reducing the risk of contamination and the cost of the assay. Plasmids have a high stability, are normally maintained in Escherichia coli and can be extracted in large amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号