首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The desiccation-tolerant phenotype of angiosperm resurrection plants is thought to rely on the induction of protective mechanisms that maintain cellular integrity during water loss. Two-dimensional (2D) sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the Xerophyta viscosa Baker proteome was carried out during dehydration to identify proteins that may play a role in such mechanisms. Quantitative analysis revealed a greater number of changes in protein expression levels at 35% than at 65% relative water content (RWC) compared to fully hydrated plants, and 17 dehydration-responsive proteins were identified by tandem mass spectrometry (MS). Proteins showing increased abundance during drying included an RNA-binding protein, chloroplast FtsH protease, glycolytic enzymes and antioxidants. A number of photosynthetic proteins declined sharply in abundance in X. viscosa at RWC below 65%, including four components of photosystem II (PSII), and Western blot analysis confirmed that two of these (psbP and Lhcb2) were not detectable at 30% RWC. These data confirm that poikilochlorophylly in X. viscosa involves the breakdown of photosynthetic proteins during dismantling of the thylakoid membranes. In contrast, levels of these photosynthetic proteins were largely maintained during dehydration in the homoiochlorophyllous species Craterostigma plantagineum Hochst, which does not dismantle thylakoid membranes on drying.  相似文献   

2.
3.
4.
5.
Leaves of the resurrection plant Xerophyta villosa appear tobecome desiccation tolerant while they dry on the intact plant.After a small decline during moderate water stress, the polyribosomecontent of attached leaves appears to rise at 50% relative watercontent (RWC) to almost double the content in controls, beforeit finally declines to zero at 20% RWC. Partition of leaf solubleprotein by polyacrylamide gel electrophoresis indicates an increasein protein with low mobility in dehydrated leaves. Studies onthe incorporation of 14C-valine and 3H-valine, and of proteinsdissociated into their component polypeptddes suggest that proteinsynthesis during dehydration is at least partly responsiblefor the changes in soluble protein.  相似文献   

6.
The phosphorylation of glucose and fructose is an important step in regulating the supply of hexose sugars for biosynthesis and metabolism. Changes in leaf hexokinase (EC 2.7.1.1) activity and in vivo metabolite levels were examined during drying in desiccation-tolerant Sporobolus stapfianus and Xerophyta viscosa. Leaf hexokinase activity was significantly induced from 85% to 29% relative water content (RWC) in S. stapfianus and from 89% to 55% RWC in X. viscosa. The increase in hexokinase corresponded to the region of sucrose accumulation in both species, with the highest activity levels coinciding with region of net glucose and fructose removal. The decline of hexose sugars and accumulation of sucrose in both plant species was not associated with a decline in acid and neutral invertase. The increase in hexokinase activity may be important to ensure that the phosphorylation and incorporation of glucose and fructose into metabolism exceeded production from potential hydrolytic activity. Total cellular glucose-6-phosphate (Glc-6-P) and fructose-6-phosphate (Fru-6-P) levels were held constant throughout dehydration. In contrast to hexokinase, fructokinase activity was unchanged during dehydration. Hexokinase activity was not fully induced in leaves of S. stapfianus dried detached from the plant, suggesting that the increase in hexokinase may be associated with the acquisition of desiccation-tolerance.  相似文献   

7.
8.
We investigated the photosynthetic limitations occurring during dehydration and rehydration of Xerophyta humilis, a poikilochlorophyllous resurrection plant, and whether volatile and non‐volatile isoprenoids might be involved in desiccation tolerance. Photosynthesis declined rapidly after dehydration below 85% relative water content (RWC). Raising intercellular CO2 concentrations during desiccation suggest that the main photosynthetic limitation was photochemical, affecting energy‐dependent RuBP regeneration. Imaging fluorescence confirmed that both the number of photosystem II (PSII) functional reaction centres and their efficiency were impaired under progressive dehydration, and revealed the occurrence of heterogeneous photosynthesis during desiccation, being the basal leaf area more resistant to the stress. Full recovery in photosynthetic parameters occurred on rehydration, confirming that photosynthetic limitations were fully reversible and that no permanent damage occurred. During desiccation, zeaxanthin and lutein increased only when photosynthesis had ceased, implying that these isoprenoids do not directly scavenge reactive oxygen species, but rather protect photosynthetic membranes from damage and consequent denaturation. X. humilis was found to emit isoprene, a volatile isoprenoid that acts as a membrane strengthener in plants. Isoprene emission was stimulated by drought and peaked at 80% RWC. We surmise that isoprene and non‐volatile isoprenoids cooperate in reducing membrane damage in X. humilis, isoprene being effective when desiccation is moderate while non‐volatile isoprenoids operate when water deficit is more extreme.  相似文献   

9.
10.
11.
In order to ultimately understand the whole plant mechanism of attaining desiccation tolerance, we undertook to investigate the root tissues of the resurrection plant Xerophyta viscosa, as previous work has only been conducted on the leaf tissues of resurrection plants. An aeroponic plant growth system was designed and optimised to observe the root’s response to desiccation without the restrictions of a soil medium, allowing easy access to roots. Successful culture of both X.viscosa and the control, Zea mays, was achieved and dehydration stress was implemented through reduction of nutrient solution spraying of the roots. After drying to the air dry state (achieved after 7 days for roots and 10 days for shoots), rehydration was achieved by resumption of root spraying. X.viscosa plants survived desiccation and recovered but Z. mays did not. The activity of the antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase and quantities of ascorbate and glutathione were determined during root desiccation. There was an initial decline in activity in all enzymes upon drying to 80% RWC, but activity thereafter remained constant, at rates indicative of potential metabolic activity, to the air-dry state. This data suggests that these enzymes are not denatured by desiccation of the root tissue. Ascorbate and glutathione content remained constant at concentrations of 70 and 100 μM, respectively during drying. Thus root tissues appear to retain antioxidant potential during drying, for use in recovery upon rehydration, as has been reported for leaf tissues of this and other resurrection plants.  相似文献   

12.
Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.  相似文献   

13.
Desiccation presents a major challenge for the Antarctic midge, Belgica antarctica. In this study, we use proteomic profiling to evaluate protein changes in the larvae elicited by dehydration and rehydration. Larvae were desiccated at 75% relative humidity (RH) for 12 h to achieve a body water loss of 35%, approximately half of the water that can be lost before the larvae succumb to dehydration. To evaluate the rehydration response, larvae were first desiccated, then rehydrated for 6 h at 100% RH and then in water for 6 h. Controls were held continuously at 100% RH. Protein analysis was performed using 2‐DE and nanoscale capillary LC/MS/MS. Twenty‐four identified proteins changed in abundance in response to desiccation: 16 were more abundant and 8 were less abundant; 84% of these proteins were contractile or cytoskeletal proteins. Thirteen rehydration‐regulated proteins were identified: 8 were more abundant and 5 were less abundant, and 69% of these proteins were also contractile or cytoskeletal proteins. Additional proteins responsive to desiccation and rehydration were involved in functions including stress responses, energy metabolism, protein synthesis, glucogenesis and membrane transport. We conclude that the major protein responses elicited by both desiccation and rehydration are linked to body contraction and cytoskeleton rearrangements.  相似文献   

14.
Mechanisms of avoidance and protection against light damage were studied in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa.In C. wilmsii, a combination of both physical and chemical changes appeared to afford protection against free radical damage. During dehydration leaves curled inwards, and the abaxial surface became exposed to light. The tissue became purple/brown in colour, this coinciding with a three-fold increase in anthocyanin content and a 30% decline in chlorophyll content. Thus light-chlorophyll interactions are progressively reduced as chlorophyll became masked by anthocyanins in abaxial layers and shaded in the adaxial layers. Ascorbate peroxidase (AP) activity increased during this process but declined when the leaf was desiccated (5% RWC). During rehydration leaves uncurled and the potential for normal light-chlorophyll interaction was possible before full hydration had occurred. Superoxide dismutase (SOD) and glutathione reductase (GR) activities increased markedly during this stage, possibly affording free radical protection until full hydration and metabolic recovery had occurred.In contrast, the leaves of X. viscosa did not curl, but light-chlorophyll interactions were minimised by the loss of chlorophyll and dismantling of thylakoid membranes. During dehydration, free radical protection was afforded by a four-fold increase in anthocyanin content and increased activities of AP, GR and SOD. These declined during rehydration. It is suggested that potential free radical damage may be avoided by the persistence of anthocyanins during the period of thylakoid membrane re-assembly and full chlorophyll restitution which only occurred once the leaves were fully rehydrated.  相似文献   

15.
The strategy of 'complementation by functional sufficiency' was used to isolate a cDNA designated XVSAP1 from a cDNA library constructed from dehydrated Xerophyta viscosa Baker leaves. Analysis of the cDNA sequence indicated a highly hydrophobic protein with six transmembrane regions. Southern blot analysis revealed that there are at least two copies of XVSAP1 in X. viscosa. The deduced amino acid sequence showed 49% identity to WCOR413, a low-temperature-regulated protein from wheat. The protein also showed between 25% to 56% identity to WCOR413-like proteins from Arabidopsis thaliana. Expression of XVSAP1 in Escherichia coli (srl::Tn10) conferred osmotic stress tolerance when the cells were grown in 1 M sorbitol. Analysis of gene expression using semi-quantitative RT-PCR indicated that XVSAP1 is induced by dehydration, salt stress (100 mM), both low (4 degrees C) and high temperature (42 degrees C) and high light treatment (1500 micromol m(-2) s(-1)). These results suggest that XVSAP1 may have a significant role to play in the response of X. viscosa to abiotic stresses.  相似文献   

16.
Reversible phosphorylation of proteins is an important mechanism by which organisms regulate their reactions to external stimuli. To investigate the involvement of phosphorylation during acquisition of desiccation tolerance, we have analysed dehydration-induced protein phosphorylation in the desiccation tolerant resurrection plant Craterostigma plantagineum. Several dehydration-induced proteins were shown to be transiently phosphorylated during a dehydration and rehydration (RH) cycle. Two abundantly expressed phosphoproteins are the dehydration- and abscisic acid (ABA)-responsive protein CDeT11-24 and the group 2 late embryogenesis abundant (LEA) protein CDeT6-19. Although both proteins accumulate in leaves and roots with similar kinetics in response to dehydration, their phosphorylation patterns differ. Several phosphorylation sites were identified on the CDeT11-24 protein using liquid chromatography-tandem mass spectrometry (LCMS/MS). The coincidence of phosphorylation sites with predicted coiled-coil regions leads to the hypothesis that CDeT11-24 phosphorylations influence the stability of coiled-coil interactions with itself and possibly other proteins.  相似文献   

17.
Desiccation tolerance is a complex trait that is broadly but infrequently present throughout the evolutionary tree of life. Desiccation tolerance has played a significant role in land plant evolution, in both the vegetative and reproductive life history stages. In the land plants, the late embryogenesis abundant (LEA) gene families are involved in both abiotic stress tolerance and the development of reproductive propagules. They are also a major component of vegetative desiccation tolerance. Phylogenies were estimated for four families of LEA genes from Arabidopsis, Physcomitrella, and the desiccation tolerant plants Tortula ruralis, Craterostigma plantagineum, and Xerophyta humilis. Microarray expression data from Arabidopsis and a subset of the Physcomitrella LEAs were used to estimate ancestral expression patterns in the LEA families and to evaluate alternative hypotheses for the origins of vegetative desiccation tolerance in the flowering plants. The results contradict the idea that vegetative desiccation tolerance in the resurrection angiosperms Craterostigma and Xerophyta arose through the co-option of genes exclusively related to stress tolerance, and support the propagule-derived origin of vegetative desiccation tolerance in the resurrection plants.  相似文献   

18.
This paper compares the changes in water content, chlorophyll a fluorescence and leaf ultrastructure during dehydration and rehydration in two desiccation tolerant plants Xerophyta viscosa and X. retinervis. Both species showed decreasing quantum efficiency of photosystem 2 (Fv/Fm) with decreasing water content. Extreme water loss observed after 25 d of dehydration resulted in considerable damage of leaf tissue ultrastructure. After rehydration, both species need several days to reconstitute their photosynthetic machinery.  相似文献   

19.
Sugar complements were analysed in extracts from leaves of desiccation tolerant species in the angiosperm families Cyperaceae, Gesneriaceae, Liliaceae, Poaceae and Velloziaceae. Total sugar content was higher in live air-dry leaves of all desiccation tolerant species (except the grass Eragrostiella nardoides; 22 µmoles/g dw) than in the dead air-dry leaves of the desiccation sensitive grass Sporobolus pyramidalis (36 µmoles/g dw). Sucrose contents rose to high levels (40–98 µmoles/g dw) in live air-dry leaves of all species (except the grass Eragrostiella nardoides in which it rose to only 11 µmoles/g dw) to become the predominant sugar. Glucose and/or fructose contents frequently were lower after leaf drying but usually these were the sugars of next highest contents in live air-dry leaves. Contents of raffinose (that has been postulated to reduce sucrose crystallization) rose to c. 10% of sucrose contents in air-dry leaves of most desiccation tolerant species (but only c. 4% in Tripogon jacquemontii) compared with c. 2% of sucrose contents in the sensitive grass S. pyramidalis. Trehalose (a rare sugar in seed-plants) was present in all but one desiccation tolerant species (Xerophyta villosa) but only in minor amounts. The results are consistent with the views that sugars play a protective role during drying of desiccation tolerant plants in general but that other factors are also involved indesiccation tolerance, that in desiccation tolerant angiospermae sucrose is generally the predominant protective sugar and that raffinose and trehalose may supplement the role of sucrose.  相似文献   

20.
Membrane organization of the desiccation tolerant moss Tortula ruralis was studied in several intensely dehydrated states (75% relative humidity [RH], 90% RH, plasmolysis in molar salt, freezing to −20°C) by 31P nuclear magnetic resonance and ultrastructural analyses. Both methods revealed that even at 75% RH (−400 bars), the moss cellular membranes retained extended phospholipid bilayers. Ultrastructural analyses of the fully hydrated moss showed an extensive proliferation of membrane vesicles in the endoplasmic reticulum. During dehydration, these vesicles form layers of membrane under the plasmalemma and in some cases appear to fuse with the surface membrane. This suggests that these vesicles may serve as a reservoir of membranes to accommodate for membrane surface area changes during desiccation and subsequent rehydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号