首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new type of 1-aryl-5-(4-methylsulfonylphenyl)imidazoles, possessing C-2 alkylthio (SMe or SEt) substituents, were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 1-(4-bromophenyl)-5-(4-methylsulfonylphenyl)-2-methylthioimidazole (11g), was the most potent and selective COX-2 inhibitor (COX-2 IC50=0.43 microM with no inhibition of COX-1 up to 25 microM) relative to the reference drug celecoxib (COX-2 IC50=0.21 microM with no inhibition of COX-1 up to 25 microM) and also showed very good anti-inflammatory activity compared to celecoxib in carrageenan-induced rat paw edema assay.  相似文献   

2.
A new type of 4,5-diaryl-4H-1,2,4-triazole, possessing C-3 thio and alkylthio (SH, SMe or SEt) substituents, was designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 3-ethylthio-5-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-4H-1,2,4-triazole (10d), exhibited a high in vitro selectivity (COX-1 IC50=20.5 nM; COX-2 IC50=1.8 nM; SI=11.39) relative to the reference drug celecoxib (COX-1 IC50=3.7 nM; COX-2 IC50=2.2 nM; SI=1.68) and also showed good anti-inflammatory activity compared to celecoxib in a carrageenan-induced rat paw edema assay.  相似文献   

3.
New arylhydrazone derivatives and a series of 1,5-diphenyl pyrazoles were designed and synthesized from 1-(4-chlorophenyl)-4,4,4-trifuorobutane-1,3-dione 1. The newly synthesized compounds were investigated in vivo for their anti-inflammatory activities using carrageenan-induced rat paw oedema model. Moreover, they were tested for their inhibitory activity against ovine COX-1 and COX-2 using an in vitro cyclooxygenase (COX) inhibition assay. Some of the new compounds (2f, 6a and 6d) showed a reasonable in vitro COX-2 inhibitory activity, with IC?? value of 0.45 μM and selectivity index of 111.1. A virtual screening was carried out through docking the designed compounds into the COX-2 binding site to predict if these compounds have analogous binding mode to the COX-2 inhibitors. Docking study of the synthesized compounds 2f, 6a and 6d into the active site of COX-2 revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

4.
A new series of substituted 2-sulfonyphenyl-3-phenyl-indole derivatives were synthesized and evaluated for their ability to inhibit COX-2 and COX-1enzymes. Most of the compounds synthesized were found to be highly potent and selective inhibitors of COX-2. This work led to the discovery of 2-aminosulfonylphenyl-3-phenyl-indole 5a which possesses higher activity and selectivity for COX-2 than Celecoxib both in vitro and in vivo.  相似文献   

5.
Several 2,3-diaryl pyrazines and quinoxalines with 4-sulfamoyl (SO(2)NH(2))/methylsulfonyl (SO(2)Me)-phenyl pharmacophores have been synthesized and evaluated for the cyclooxygenase (COX-1/COX-2) inhibitory activity. Smaller groups such as methoxy, methyl and fluoro when substituted at/around position-4 of the adjacent phenyl ring, have great impact on the selective COX-2 inhibitory activity of the series. Many potential compounds were obtained from a brief structure-activity relationship (SAR) study. Two of these, compounds 11 and 25 exhibited excellent in vivo activity in the established animal model of inflammation. Since compound 25 possessed an amenable sulfonamide group, two of its prodrugs 48 and 49 were also synthesized. Both of them have excellent in vivo potential, and represent a new class of COX-2 inhibitor.  相似文献   

6.
A series of phenylazobenzenesulfonamide derivatives were designed and synthesized for the evaluation as selective cyclooxygenase-2 (COX-2) inhibitors in a cellular assay using human whole blood (HWB) and an enzymatic assay using purified ovine enzymes. Extensive structure-activity relationships (SAR) were studied within this series, and several of selective COX-2 inhibitors have been identified. Among them, compound 8, 4-(4-amino-2-methylsulfanyl-phenylazo)benzenesulfonamide, showed a potent inhibitory activity to the cyclooxygenase enzymes (IC(50)'s for COX-1: 23.28 microM; COX-2: 2.04 microM), being active but less COX-2 selective than celecoxib.  相似文献   

7.
The crystal structure of viral infectivity factor (Vif) was reported recently, which makes it possible to design new inhibitors against Vif by structure-based drug design. Through analysis of the protein surface of Vif, the C2 pocket located in the N-terminal was found, which is suit for developing small molecular inhibitors. Then, in our article, fragment-based virtual screening (FBVS) was conducted and a series of fragments was obtained, among which, Zif-1 bearing indole scaffold and pyridine ring can form H-bonds with Tyr148 and Ile155. Subsequently, 19 derivatives of Zif-1 were synthesized. Through the immune-fluorescence staining and Western blot assays, Zif-15 shows potent activity in inhibiting Vif-mediated A3G degradation. Further docking experiment shows that Zif-15 form H-bond interactions with residues His139, Tyr148 and Ile155. Therefore, Zif-15 is a promising lead compound against Vif that can be used to treat AIDS.  相似文献   

8.
A series of 3-heteroaryloxy4-phenyl-2-5H)-furanones were prepared and evaluated for their potency and selectivity as COX-2 inhibitors. This led to the identification of L-778,736 as a potent, orally active and selective inhibitor of the COX-2 enzyme.  相似文献   

9.
Within the continuous quest for the discovery of novel compounds able to treat anxiety and depression, the generation of a pharmacophore model for 5-HT2C receptor antagonists and the discovery of a new class of potent and selective 5-HT2C molecules are reported.  相似文献   

10.
A plenty of natural products and synthetic derivatives containing quinoline moiety have been reported to possess various pharmacological activities. Quinolines such as 2-styrylquinolines and 8-hydroxyquinolines are extensively studied for their anti-HIV-1 activity and found to act mainly through HIV-1 integrase enzyme inhibition. In continuation of our efforts to search for newer anti-HIV-1 molecules, thirty-one quinoline derivatives with different linkers to ancillary phenyl ring were synthesized and evaluated for in vitro anti-HIV-1 activity using TZM-bl assays. Compound 31 showed higher activity in TZM-bl cell line against HIV-1VB59 and HIV-1UG070 cell associated virus (IC50 3.35 ± 0.87 and 2.57 ± 0.71 μM) as compared to other derivatives. Compound 31 was further tested against cell free virus HIV-1VB59 and HIV-1UG070 (IC50 1.27 ± 0.31 and 2.88 ± 1.79 μM, TI 42.20 and 18.61, respectively). This lead molecule also showed good activity in viral entry inhibition assay and cell fusion assay defining its mode of action. The activity of compound 31 was confirmed by testing against HIV-1VB51 in activated peripheral blood mononuclear cells (PBMCs). Binding interactions of 31 were compared with known entry inhibitors.  相似文献   

11.
In the current work, Schiff base derivatives of antipyrine were synthesized. The chemical characterization of the compounds was confirmed using IR, 1H NMR, 13C NMR and mass spectroscopies. The inhibitory potency of synthesized compounds was investigated towards acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidases A and B (MAO-A and MAO-B) enzymes. Some of the compounds displayed significant inhibitory activity against AChE and MAO-B enzymes, respectively. According to AChE enzyme inhibition assay, compounds 3e and 3g were found as the most potent derivatives with IC50 values of 0.285 µM and 0.057 µM, respectively. Also, compounds 3a (IC50 = 0.114 µM), 3h (IC50 = 0.049 µM), and 3i (IC50 = 0.054 µM) were the most active derivatives against MAO-B enzyme activity. So as to understand inhibition type, enzyme kinetics studies were carried out. Furthermore, molecular docking studies were performed to define and evaluate the interaction mechanism between compounds 3g and 3h and related enzymes. ADME (Absorption, Distribution, Metabolism, and Excretion) and BBB (Blood, Brain, Barier) permeability predictions were applied to estimate pharmacokinetic profiles of synthesized compounds.  相似文献   

12.
PDK1 is an important regulator of the PI3K/Akt pathway, which has been found frequently activated in a large number of human cancers. Herein we described the preparation of novel substituted 3-anilino-quinolin-2(1H)-ones as PDK1 inhibitors. The synthesis is based around a Buchwald–Hartwig cross-coupling of various 3-bromo-6-substituted-quinolin-2(1H)-ones with three different functionalised anilines. The modular nature of the designed synthesis allowed access to a series of novel inhibitors through derivatisation of a late-stage intermediate. All compounds were screened against isolated PDK1 enzyme, with modest inhibition observed.  相似文献   

13.
In order to identify a suitable alternative to non-steroidal anti-inflammatory drugs (NSAIDs) we aimed to develop derivatives of vortioxetine, a multimodal anti-depressive drug that has been shownpreviously to be endowed withanti-inflammatory activity in human monocytes/macrophages. Vortioxetine (1) was synthesized in good yield and different alkyl and aryl derivatives were prepared based on their structural diversity and easy availability. The compounds were tested on human monocytes isolated from healthy donors for theireffect on superoxide anion production and cytokine gene expression, and for COX-1/2 gene expression and activity modulation. Moreover, a docking study was performed to predict the interactions between the synthesized compounds and COX-1 and COX-2. Correlating experimental biological data to the molecular modelling studies, it emerged that among the novel compounds, 6 was endowed of antioxidant and anti-COX-1 activity, vortioxetine and 3 were good antioxidants and mild anti-COX-1/2 inhibitors, while 7 was a good anti-COX-1/2 inhibitor and 11 was more specific versus COX-2.  相似文献   

14.
A series of pyridine acyl sulfonamide derivatives (1-24) have been designed and synthesized and their biological activities were also evaluated as potential cyclooxygenase-2 (COX-2) inhibitors. Among all the compounds, compound 23 displayed the most potent COX-2 inhibitory activity with an IC(50) of 0.8 μM. Antitumor and anti-inflammatory assays indicated that compound 23 owned high antiproliferative activity against B16-F10, HepG2 and MCF-7 cancer cell lines as well as COX-2-derived prostaglandin E(2) (PGE(2)) inhibitory activity of murine macrophage RAW 264.7 cell line with IC(50) values of 2.8, 1.2, 1.8 and 0.15 μM, respectively. Docking simulation was performed to position compound 23 into the COX-2 active site to determine the probable binding model.  相似文献   

15.
A novel series of 3-hydroxychromones were prepared and found to be CDK inhibitors. Isothiazolidine 1,1-dioxide analogues showed potent CDK1 and CDK2 inhibitory activities and inhibited proliferation of EJ, HCT116, SW620, and MDAMB468 cancer cells.  相似文献   

16.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

17.
3-Formylchromone (1), 3-methyl-7-hydroxychromone (2) and Schiff bases of 3-formylchromone 319 have been synthesized and their anti-thymidine phosphorylase inhibitory activity was evaluated. Compounds 119 showed a varying degree of thymidine phosphorylase inhibition with IC50 values 19.77 ± 3.25 to 480.21 ± 2.34 μM. Their activity was compared with the standard 7-deazaxanthine (IC50 = 39.28 ± 0.76 μM). Compound 12 showed an excellent thymidine phosphorylase inhibitory activity with an IC50 value of 19.77 ± 3.25 μM, better than the standard. Compound 4 also showed an excellent inhibitory activity (IC50 = 40.29 ± 4.56 μM). The parent 3-formylchromone (1) and 3-methyl-7-hydroxychromone (2) were found to be inactive. The structures of the compounds were elucidated by using spectroscopic techniques, including 1H NMR, EI MS, IR, UV and elemental analysis.  相似文献   

18.
Ketoprofenoyl-CoA thioester 3 was synthesized by coupling ketoprofen to coenzyme A using the mixed anhydride method. Diastereoisomeric compounds 3a and 3b corresponding to the enantiomers of ketoprofen, were obtained in optically pure form by preparative HPLC. A non-acylating analogue, rac-3-(3-benzoylphenyl)-2-oxo-butanoyl-CoA (7) was also prepared. The biological evaluation suggested that 3a and 3b are reversible inhibitors of COX-1 and irreversible inhibitors of COX-2. Compound 7 appears to be a poor but selective inhibitor of COX-1.  相似文献   

19.
We have previously reported 7-bromo-2-(2-chrolophenyl)-imidazoquinolin-4(5H)-one (1) as a novel potent mPGES-1 inhibitor. To clarify the essential functional groups of 1 for inhibition of mPGES-1, we investigated this compound structure–activity relationship following substitution at the C(4)-position and N-alkylation at the N(1)-, the N(3)-, and the N(5)-positions of 1. To prepare the target compounds, we established a good methodology for selective N-alkylation of the imidazoquinolin-4-one, that is, selective alkylation of 1 at the N(3)- and N(5)-positions was achieved by use of an appropriate base and introduction of a protecting group at the nitrogen atom in the imidazole part, respectively. Replacement of the C(4)-oxo group with nitrogen- or sulfur- linked substituents gave decreased inhibitory activity for mPGES-1, and introduction of alkyl groups on the nitrogen atom at the N(1)-, the N(3)-, and the N(5)-positions resulted in even larger loss of inhibitory activity. These results revealed that the C(4)-oxo group, and the hydrogen atoms at the N(5)-position and the imidazole part were the best substituents.  相似文献   

20.
A novel series of pyrazole derivatives were synthesized and evaluated in vivo for their anti-inflammatory activity in carrageenan-induced rat paw edema model. Among all compounds, 5a, and 5b showed comparable anti-inflammatory activity to Nimesulide, the standard drug taken for the studies. In silico (docking) studies were carried out to investigate the theoretical binding mode of the compounds to target the cyclooxygenase (COX-2) using Autodock 4.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号