首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of polyhydroxyalkanoates (PHAs) in activated sludge treating wastewater represents an economical and environmental promising alternative to pure culture fermentations. A process for production of PHA from a paper mill wastewater was examined at laboratory scale. The three stage process examined consisted of acidogenic fermentation to convert wastewater organic matter to volatile fatty acids (VFAs), an activated sludge system operating under feast/famine conditions to enrich for PHA producing organisms and accumulation of PHA in batch experiments. After fermentation of the wastewater, 74% of the soluble COD was present as VFA (acetate, propionate, butyrate and valerate) and the resulting PHA after batch accumulation consisted of 31-47 mol% hydroxybutyrate and 53-69 mol% hydroxyvalerate. The maximum PHA content achieved was 48% of the sludge dry weight and the three stage process exhibited a potential to produce 0.11 kg of PHA per kg of influent COD treated.  相似文献   

2.
Yang X  Du M  Lee DJ  Wan C  Zheng L  Wan F 《Bioresource technology》2012,103(1):494-497
Organic matters in sewage sludge can be converted into volatile fatty acids (VFAs) as renewable carbon sources. This work for the first time applied anthraquinone-2,6-disulfonate (AQDS) for enhancing VFA production from sewage sludge. With 0.066 or 0.33 g AQDS g−1 dried solids (DS), the yields for VFAs peak at 403 or 563 mg l−1, 1.9- or 2.7-fold to the control. The accumulated VFAs were principally composed of acetate and propionate. The AQDS enhances degradation rates of model proteins (bovine serum albumin), but had little enhancement on that of model polysaccharides (dextrans). The acidification step is proposed the rate-limiting step for VFA production from sewage sludge, in which the AQDS molecules shuttle electrons to accelerate the redox reactions associated with amino acid degradation. Methanogenic activities are inhibited in the presence of AQDS. The AQDS-assisted VFAs are renewable organic carbon sources, although their direct use for anaerobic digestion is not advised.  相似文献   

3.
Fermentative hydrogen production, as a process for clean energy recovery from organic wastewater, is limited by its low hydrogen yield due to incomplete conversion of substrates, with most of the fermentation products being volatile fatty acids (VFAs). Thus, further recovery of the energy from VFAs is expected. In this work, microbial fuel cell (MFC) was applied to recover energy in the form of electricity from mixed VFAs of acetate, propionate, and butyrate. Response surface methodology was adopted to investigate the relative contribution and possible interactions of the three components of VFAs. A stable electricity generation was demonstrated in MFCs after the enrichment of electrochemically active bacteria. Analysis showed that power density was more sensitive to the composition of mixed VFAs than coulombic efficiency. The electricity generation could mainly be attributed to the portion of acetate and propionate. However, the two components showed an antagonistic effect when propionate exceeded 19%, causing a decrease in coulombic efficiency. Butyrate was found to exert a negative impact on both power density and coulombic efficiency. Denaturing gradient gel electrophoresis profiles revealed the enrichment of electrochemically active bacteria from the inoculum sludge. Proteobacteria (Beta-, Delta-) and Bacteroidetes were predominant in all VFA-fed MFCs. Shifts in bacterial community structures were observed when different compositions of VFA mixtures were used as the electron donor. The overall electron recovery efficiency may be increased from 15.7% to 27.4% if fermentative hydrogen production and MFC processes are integrated.  相似文献   

4.
This work focuses on fermentation of pre-treated waste activated sludge (WAS) to generate volatile fatty acids (VFAs). Pre-treatment by high-pressure thermal hydrolysis (HPTH) was shown to aid WAS fermentation. Compared to fermentation of raw WAS, pre-treatment enabled a 2-5x increase in VFA yield (gVFA(COD)gTCOD(-1)) and 4-6x increase in VFA production rate (gVFA(COD) L(-1) d(-1)). Three sludges, pre-treated in full-scale HPTH plants, were fermented. One was from a plant processing a mix of primary sludge and WAS and the other two from plants processing solely WAS. The HPTH plants solubilised suspended matter, evidenced by a 20-30% decrease in suspended solids and an increase of soluble COD : total COD from 0.04 to 0.4. Fermentation of the three sludges yielded similar VFA concentrations (15-20gVFA(COD) L(-1)). The yields were largely independent of retention time (1 d-6 d) and temperature (42°C, 55°C). Also, the product spectrum depended mostly on the composition of the sludge rather than on operating conditions.  相似文献   

5.
城市污泥添加厨余垃圾厌氧发酵产挥发性脂肪酸的研究   总被引:1,自引:0,他引:1  
张莉  刘和  陈坚 《工业微生物》2011,41(2):26-31
为了考察污泥产酸工业化的可行性和添加食品废弃物对污泥产酸的影响,本实验在实验室的基础上进行扩大研究,考察了不同的底物总固体浓度对产挥发性脂肪酸的影响.结果显示添加厨余垃圾之后挥发性脂肪酸的累积量可达到17.62g/L.综合产挥发性脂肪酸效果、底物降解效果和产率等情况建议在较大规模的生产过程中选择130g/L的底物浓度为...  相似文献   

6.
Volatile fatty acids (VFAs) are used as building blocks to synthesize a wide range of commercially-important chemicals. Microbially produced VFAs (acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid) can be considered as a replacement for petroleum-based VFAs due to their renewability, degradability, and sustainability. The main objective of this review is to summarize research and development of VFA production methods via microbial routes, their downstream processes, current applications, and main challenges. Various fermentation processes have been developed to produce of VFAs starting from commercially-available sugars and other raw materials such as lignocellulose, whey, and waste sludge. Only few microbes have been explored for their potential to produce VFAs, and very little genomic information data is available at the present time. There is a need to use metabolic engineering, systematic biology, evolutionary engineering, and bioinformatics to discover VFA biosynthesis routes since the pathways for isobutyric acid and isovaleric acids are still not well understood.  相似文献   

7.
To reduce the production cost of polyhydroxyalkanoates (PHA) and disposal amount of excess sludge simultaneously, the feasibility of using fermentative volatile fatty acids (VFAs) as carbon sources to synthesize PHA by activated sludge was examined. At pH 11.0, 60 degrees C and fermentative time of 7d, the VFAs yield was 258.65 mgTOC/gVSS. To restrain cell growth during PHA production, the released phosphorus and residual ammonium in the fermentative VFAs was recovered by the formation of struvite precipitation. Acetic acid was the predominant composition of the fermentative VFAs. PHA accumulation in excess sludge occurred feeding by fermentative VFAs with aerobic dynamic feeding process. The maximum PHA content accounted for 56.5% of the dry cell. It can be concluded from this study that the VFAs generated from excess sludge fermentation were a suitable carbon source for PHA production by activated sludge.  相似文献   

8.
多级逆流工艺促进城市污泥厌氧发酵生产挥发性脂肪酸   总被引:2,自引:0,他引:2  
采用一种新型的厌氧发酵工艺——多级逆流发酵工艺对城市污泥进行厌氧发酵, 实现高效产挥发性脂肪酸的目的。结果表明, 实验条件下应用多级逆流发酵工艺, 挥发性脂肪酸浓度与产率分别达到(10.5±0.5) g/L和0.20 gVFAs/ gVS, 与普通厌氧发酵工艺相比, 分别提高了31%和54%。此外, 在多级逆流工艺中, 底物有机质去除率可达50%, 较普通厌氧发酵提高了37%。进一步分析多级逆流工艺产酸的机制, 发现产酸效率的提高在于降低了发酵产物对厌氧产酸细菌的抑制效应, 并且工艺的VFAs产率以及有机质去除率分别取决于第一级和第三级厌氧发酵过程。因此, 城市污泥采用多级逆流工艺厌氧发酵不仅能够有效促进挥发性脂肪酸的生成, 而且能够较大程度上提高污泥中有机质的去除率。  相似文献   

9.
Volatile fatty acids (VFA) represent short‐chain fatty acids consisting of six or fewer carbon atoms that can be distilled at atmospheric pressure. In anaerobic digestion processes VFAs are of central importance for maintaining stable reactor performance and biogas production, are used as indicators for arising problems and are important process monitoring parameters. In the present study, sludge derived form a full‐scale anaerobic digester of a wastewater treatment plant was spiked with formate, acetate, propionate, and butyrate in order to evaluate various commonly used techniques for VFA extraction, preservation, and storage. It was shown that VFA extraction after centrifugation warranted the highest recovery rates for spiked VFAs. Moreover, experiments clearly indicated the importance of a fast sample handling, including the necessity of immediate cooling of the samples. Chemical sample preservation within a narrow time frame or deep freezing emerged as an alternative to instant VFA extraction. Short‐time storage of extracted VFA samples at + 4°C is an option for up to 7 days, for longer periods storage at –20°C was found to be applicable.  相似文献   

10.
Wei Y  Yuan X  Shi X  Chu Y  Guo R 《Bioresource technology》2011,102(4):3805-3809
This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0 mL/g VS at 204 h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.  相似文献   

11.
利用活性污泥微生物将剩余污泥发酵液中的挥发性脂肪酸(Volatile fatty acids,VFAs)转化为聚羟基脂肪酸酯(Polyhydroxyalkanoates,PHA)是目前环境生物技术领域的研究热点.但针对发酵液中非VFAs物质(主要是溶解性有机物,Dissolved organic matter,DOM)...  相似文献   

12.
Hydrolysis of organic particulates in rapid fermentative processes can be inhibited. The volatile fatty acids (VFA) released during fermentation reduce pH. Whether VFA or the drop in pH inhibits hydrolysis is unclear. The effects of pH and acetate on the enzymatic hydrolysis of a potato sample that contains both carbohydrate and protein were studied at fixed pH (5-9) in the presence/absence of 20 g/L of acetate. Experimental results showed that the effects of pH and acetate on the hydrolysis of carbohydrate differed from those on the hydrolysis of protein. Numerous kinetic models fitted the hydrolysis data obtained during the first 40 h of hydrolysis when inhibitory effects were insignificant. The Chen-Hashimoto model was used herein to fit the hydrolysis data obtained during 144 h of reaction. Also, the non-competitive inhibition model of three inhibitors (H(+), OH(-), total/undissociated/dissociated acetate) successfully described the inhibition of the hydrolysis of both carbohydrate and protein.  相似文献   

13.
14.
A new chemically enhanced primary sedimentation (CEPS) and sludge fermentation process are developed for improved nutrient removal, energy saving and resource recovery in municipal wastewater treatment. The FeCl3-based CEPS with a dosage of 20 mg-Fe/L can remove 75.6% of organic pollutants and 99.3% of PO4-P on average from wastewater. Under natural fermentation conditions, the CEPS sludge undergoes effective hydrolysis and acidogenesis to produce volatile fatty acids (VFAs) and release phosphate as valuable resources. By using CEPS, around 27% of the organic carbon in wastewater influent can be recovered via sludge fermentation, mainly in the form of VFAs, and about 23% of phosphorus recovered for making vivianite fertilizer. In comparison, both the organic and phosphorus recovery ratios from wastewater are under 10% with conventional primary sedimentation and sludge fermentation. CEPS combined with side-stream sludge fermentation can be readily applied in new treatment plants or in a retrofit of existing treatment systems.  相似文献   

15.
Gao Y  Peng Y  Zhang J  Wang S  Guo J  Ye L 《Bioresource technology》2011,102(5):4091-4097
To enhance nutrient removal performance and reduce disposal amount of waste activated sludge (WAS), a pilot-scale continuous system consisting of a 2-step sludge alkaline fermentation process and an A2O reactor was proposed. The feasibility of WAS reducing and resourcing by alkaline fermentation was investigated. Volatile fatty acids (VFA) yield was higher under alkaline condition than that under acidic condition. Through 2-step alkaline fermentation, substantial VFA was accumulated, and then elutriated out continuously from an up-flow column by domestic wastewater. The results showed that 38.2% of sludge was hydrolyzed, 19.7% was finally acidified into VFA, and as high as 42.1% of WAS was reduced. Moreover, after introducing the fermentation liquids with higher proportion of acetic acid and propionic acid into the A2O reactor, the total nitrogen and phosphorus removal efficiencies reached to 80.1% and 90.0%, respectively. Sludge reduction and enhanced nutrient removal could be achieved simultaneously in the proposed system.  相似文献   

16.
【目的】合成气发酵对大力开发可再生资源和促进国家可持续发展具有重要意义,研究旨在探究不同生境微生物转化H2/CO2产乙酸及其合成气发酵的潜力。【方法】采集剩余污泥、牛粪、产甲烷污泥和河道底物样品在中温(37 °C)条件下生物转化H2/CO2气体,将来源于牛粪样品的H2/CO2转化富集物用于合成气发酵,通过454高通量技术和定量PCR技术分析复杂微生物群落的组成,GC气相色谱法检测气体转化产生的挥发性脂肪酸(VFAs)浓度。【结果】牛粪和剩余污泥微生物利用H2/CO2气体生成乙酸、乙醇和丁酸等,最高乙酸浓度分别为63 mmol/L和40 mmol/L,明显高于河道底物和产甲烷污泥样品的最高乙酸浓度3 mmol/L和16 mmol/L。牛粪和剩余污泥微生物中含有种类多样化的同型产乙酸菌,剩余污泥中同型产乙酸菌主要为Clostridium spp.、Sporomusa malonica和Acetoanaerobium noterae,牛粪中则为Clostridium spp.、Treponema azotonutricium和Oxobacter pfennigii。【结论】同型产乙酸菌的丰富度和数量两个因素都对复杂微生物群落转化H2/CO2产乙酸效率至关重要;转化H2/CO2得到的富集物可用于合成气发酵产乙酸和乙醇,这为基于混合培养技术的合成气发酵提供了依据。  相似文献   

17.
18.
"Extraruminal" fermentations employing in vitro incubation of mixed ruminal bacterial consortia, are capable of converting a complex array of biomass materials to mixtures of volatile fatty acids (VFA), methane, and carbon dioxide. Most of the potential energy in the biomass feedstock is retained in the VFA products, which are potential reactants for electrochemical conversion to hydrocarbon fuels. Quantitative data on VFA yields and proportions from biomass components are necessary for determining industrial feasibility, but such measurements have not been systematically reported. VFA yields and proportions were determined for a variety of carbohydrates, proteins and nucleic acids. Carbohydrates yielded primarily acetic and propionic acids, while proteins also yielded a more favorable product mix (longer average chain length and branched chain VFAs). Addition of certain co-substrates (e.g., glycerol) favorably improved the VFA product mix. The results have implications for hydrocarbon fuel generation from biomass materials by hybrid fermentation/chemical processes.  相似文献   

19.
Anaerobic oxidation of volatile fatty acids (VFAs) as the key intermediates is restricted thermodynamically. Presently, enriched acetogenic and methanogenic cultures were used for syntrophic anaerobic digestion of VFAs in an upflow anaerobic sludge bed reactor fed with acetic, propionic, and butyric acids at maximum concentrations of 5.0, 3.0, and 4.0 g/L, respectively. Interactive effects of propionate, butyrate and acetate were analyzed. Hydraulic retention time (HRT) and acetate oxidizing syntrophs and methanogen (hydrogenotrophs) to syntrophic bacteria (propionate- and butyrate-oxidizing bacteria) population ratio (M/A) were investigated as key microbiological and operating variables of VFA anaerobic degradations. M/A did not affect the size distribution and had little effect on extracellular polymer contents of the granules. Granular sludge with close spatial microbial proximity enhanced syntrophic degradation of VFAs compared to other cultures, such as suspended cultures. Optimum conditions were found to be propionate = 1.93 g/L, butyrate = 2.15 g/L, acetate = 2.50 g/L, HRT = 22 h, and M/A = 2.5 corresponding to maximum VFA removal and biogas production rate. Results of verification experiments and predicted values from fitted correlations were in close agreement at the 95% confidence interval. Granules seemed to be smaller particles and less stable in construction with an irregular fractured surface compared to the original granules.  相似文献   

20.
Dynamics of the anaerobic process: effects of volatile fatty acids   总被引:6,自引:0,他引:6  
A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected both CH(4) yield, pH, and gas production and that a unique reaction pattern was seen for the higher VFAs as a result of these pulses. In this study, two thermophilic laboratory reactors were equipped with a novel VFA-sensor for monitoring specific VFAs online. Pulses of VFAs were shown to have a positive effect on process yield and the levels of all VFA were shown to stabilize at a lower level after the biomass had been subjected to several pulses. The response to pulses of propionate or acetate was different from the response to butyrate, iso-butyrate, valerate, or iso-valerate. High concentrations of propionate affected the degradation of all VFAs, while a pulse of acetate affected primarily the degradation of iso-valerate or 2-methylbutyrate. Pulses of n-butyrate, iso-butyrate, and iso-valerate yielded only acetate, while degradation of n-valerate gave both propionate and acetate. Product sensitivity or inhibition was shown for the degradation of all VFAs tested. Based on the results, it was concluded that measurements of all specific VFAs are important for control purposes and increase and decrease in a specific VFA should always be evaluated in close relationship to the conversion of other VFAs and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号