首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is a vasodilator produced from L-arginine (L-Arg) by NO synthase (NOS). Gene therapy for hypertensive disorders has been proposed using the inducible isoform of NOS (iNOS). L-Arg also can be metabolized to urea and L-ornithine (L-Orn) by arginase, and L-Orn can be metabolized to proline and/or polyamines, which are vital for cellular proliferation. To determine the effect of iNOS gene transfer on arginase, we transfected bovine pulmonary arterial endothelial cells (bPAEC) with an adenoviral vector containing the gene for iNOS (AdiNOS). As expected, NO production in AdiNOS bPAEC was substantially greater than in control bPAEC. Although urea production was significantly less in the AdiNOS bPAEC than in the control bPAEC, despite similar levels of arginase I protein, AdiNOS transfection of bPAEC had no effect on the uptake of L-Arg. Inhibiting NO production with Nomega-nitro-L-arginine methyl ester increased urea production, and inhibiting urea production with L-valine increased nitrite production, in AdiNOS bPAEC. The addition of L-Arg to the medium increased urea production by AdiNOS bPAEC in a concentration-dependent manner. Thus, in these iNOS-transfected bPAEC, the transfected iNOS and native arginase compete for a common intracellular pool of L-Arg. This competition for substrate resulted in impaired proliferation in the AdiNOS-transfected bPAEC. These findings suggest that the use of iNOS gene therapy for pulmonary hypertensive disorders may not only be beneficial through NO-mediated pulmonary vasodilation but also may decrease vascular remodeling by limiting L-Orn production by native arginase.  相似文献   

2.
3.
Arginase I (AI), the fifth and final enzyme of the urea cycle, detoxifies ammonia as part of the urea cycle. In previous studies from others, AI was not found in extrahepatic tissues except in primate blood cells, and its roles outside the urea cycle have not been well recognized. In this study we undertook an extensive analysis of arginase expression in postnatal mouse tissues by in situ hybridization (ISH) and RT-PCR. We also compared arginase expression patterns with those of ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT). We found that, outside of liver, AI was expressed in many tissues and cells such as the salivary gland, esophagus, stomach, pancreas, thymus, leukocytes, skin, preputial gland, uterus and sympathetic ganglia. The expression was much wider than that of arginase II, which was highly expressed only in the intestine and kidney. Several co-localization patterns of AI, ODC, and OAT have been found: (a) AI was co-localized with ODC alone in some tissues; (b) AI was co-localized with both OAT and ODC in a few tissues; (c) AI was not co-localized with OAT alone in any of the tissues examined; and (d) AI was not co-localized with either ODC or OAT in some tissues. In contrast, AII was not co-localized with either ODC or OAT alone in any of the tissues studied, and co-localization of AII with ODC and OAT was found only in the small intestine. The co-localization patterns of arginase, ODC, and OAT suggested that AI plays different roles in different tissues. The main roles of AI are regulation of arginine concentration by degrading arginine and production of ornithine for polyamine biosynthesis, but AI may not be the principal enzyme for regulating glutamate biosynthesis in tissues and cells.  相似文献   

4.
K-582 A, an antibiotic heptapeptide, has a sequence of H-L-Arg-L-Arg(OH)-D-Orn-L-Thr-D-Orn-L-Lys-D-Tyr-OH (Arg(OH), threo-gamma-hydroxyarginine). In order to investigate the relationship between structure and antimicrobial activity, four shortened analogs, des-L-Arg1, L-Arg(OH)2-K582 A (pentapeptide), des-L-Arg(OH)2-K-582 A (hexapeptide) and their N-acetyl derivatives, were synthesized by the conventional method. None of them, however, showed any antimicrobial activity. Three more analogs, [L-Lys2]K-582 A, [L-Orn2]K-582 A and [L-Arg2]K-582 A, were synthesized. Among them, only [L-Arg2]K-582 A showed substantial activity against Candida krusei and Saccharomyces rouxii, indicating that the presence of a guanidyl side chain at position 2 is an essential factor for the induction of activity.  相似文献   

5.
Protective role of arginase in a mouse model of colitis   总被引:5,自引:0,他引:5  
Arginase is the endogenous inhibitor of inducible NO synthase (iNOS), because both enzymes use the same substrate, l-arginine (Arg). Importantly, arginase synthesizes ornithine, which is metabolized by the enzyme ornithine decarboxylase (ODC) to produce polyamines. We investigated the role of these enzymes in the Citrobacter rodentium model of colitis. Arginase I, iNOS, and ODC were induced in the colon during the infection, while arginase II was not up-regulated. l-Arg supplementation of wild-type mice or iNOS deletion significantly improved colitis, and l-Arg treatment of iNOS(-/-) mice led to an additive improvement. There was a significant induction of IFN-gamma, IL-1, and TNF-alpha mRNA expression in colitis tissues that was markedly attenuated with l-Arg treatment or iNOS deletion. Treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine worsened colitis in both wild-type and iNOS(-/-) mice. Polyamine levels were increased in colitis tissues, and were further increased by l-Arg. In addition, in vivo inhibition of ODC with alpha-difluoromethylornithine also exacerbated the colitis. Taken together, these data indicate that arginase is protective in C. rodentium colitis by enhancing the generation of polyamines in addition to competitive inhibition of iNOS. Modulation of the balance of iNOS and arginase, and of the arginase-ODC metabolic pathway may represent a new strategy for regulating intestinal inflammation.  相似文献   

6.
Ornithine decarboxylase (ODC) catalyzes the first step in the polyamine biosynthetic pathway, a highly regulated pathway in which activity increases during rapid growth. Other enzymes also metabolize ornithine, and in hepatomas, rate of growth correlates with decreased activity of these other enzymes, which thus channels more ornithine to polyamine biosynthesis. Ornithine is produced from arginase cleavage of arginine, which also serves as the precursor for nitric oxide production. To study whether short-term coordination of ornithine and arginine metabolism exists in rat colon, ODC, ornithine aminotransferase (OAT), arginase, ornithine, arginine, and polyamine levels were measured after two stimuli (refeeding and/or deoxycholate exposure) known to synergistically induce ODC activity. Increased ODC activity was accompanied by increased putrescine levels, whereas OAT and arginase activity were reduced by either treatment, accompanied by an increase in both arginine and ornithine levels. These results indicate a rapid reciprocal change in ODC, OAT, and arginase activity in response to refeeding or deoxycholate. The accompanying increases in ornithine and arginine concentration are likely to contribute to increased flux through the polyamine and nitric oxide biosynthetic pathways in vivo.  相似文献   

7.
Olfactory discrimination of amino acids was investigated in brown bullhead catfish (Ameiurus nebulosus). Based on the magnitude of the observed food search activity of catfish conditioned to single amino acids, the tested compounds were classified as being detected by the catfish as equal to, similar to, or different from the conditioned stimulus. L-Proline (L-Pro)-conditioned brown bullhead catfish discriminated all amino acids from L-Pro, but catfish conditioned to L-valine (L-Val) and L-isoleucine (L-Ile) did not discriminate L-Val from L-Ile nor L-Ile from L-Val; however, all other amino acids tested were always discriminated from these two compounds. Catfish conditioned to L-alanine (L-Ala) discriminated basic, acidic and several neutral amino acids with long side-chains (LCNs) from L-Ala; however, they did not always discriminate L-Ala from all neutral amino acids with short side-chains (SCNs). The L-norleucine (L-nLeu)-conditioned fish responded to L-norvaline (L-nVal), L-methionine (L-Met) and L-Ala similarly to L-nLeu, indicating that these amino acids are detected as similar or identical to L-nLeu. L-nLeu was, however, discriminated from L-Ala in L-Ala-conditioned catfish. Interestingly, L-leucine (L-Leu) was discriminated from the conditioned stimuli, L-Ala, L-Ile and L-Val, indicating independent receptors for L-Leu. Although conditioned catfish discriminated other amino acids from L-arginine hydrochloride (L-Arg), in some tests they were unable to discriminate L-Arg from L-lysine hydrochloride (L-Lys). These results imply the existence of independent olfactory receptive pathways for: (i) L-Pro; (ii) basic amino acids (L-Arg and L-Lys); (iii) L-Leu; (iv) other neutral amino acids with branched side-chains (L-Ile and L-Val); (v) neutral amino acids with long linear side-chains (L-nLeu, L-nVal and L-Met); (vi) neutral amino acids with short side-chains; and (vii) amino acids with sulfhydryl groups (L-Cys and L-homoCys).  相似文献   

8.
Cell membranes of colonic epithelial cells (CEC) in ulcerative colitis show structural abnormalities which are specific to the disease and which suggest impaired lipogenesis in CECs. Lipogenesis from [1-14C]-n-butyrate, the chief oxidative fuel of colonic epithelial cells, was measured in isolated CECs under control conditions, with or without glucose and in the presence of mercaptoacetate, a major reducing agent in the colonic lumen- Glucose significantly (p < 0.01) stimulated lipogenesis from [1-14C]-butyrate which was reversed by 5 mM mercaptoacetate. Mercaptoacetate significantly diminished CEC thiolase activity (EC 2.3.1.9). 5-Aminosalicylic acid reversed the adverse effects of mercaptoacetate in the saponifiable fraction of extracted lipids. Changes in lipogenesis due to colonic luminal reducing agents would affect the barrier function of CECs a feature relevant to the disease process of ulcerative colitis.  相似文献   

9.
Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg), a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS) as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y(+) cationic amino acid transporter 2 (CAT2) and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO) synthase (iNOS) requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS(-/-) mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity.  相似文献   

10.
Serpin B1 is a monocyte neutrophil elastase (NE) inhibitor and is one of the most efficient inhibitors of NE. In the present study, we investigated the role of serpin B1 in the pathogenesis of ulcerative colitis by using clinical samples and an experimental model. The colonic expression of serpin B1 was determined by real-time polymerase chain reaction (PCR), Western blot analysis, and immunohistological studies in both normal and inflamed mucosa from patients with ulcerative colitis. Serpin B1 mRNA expression was determined by real-time PCR in the mouse dextran sodium sulfate (DSS)-induced colitis model. Young adult mouse colonic epithelial (YAMC) cells were used to determine the role of serpin B1. Serpin B1 gene transfected YAMC cells were treated with H(2)O(2) to measure cell viability. The expression of NE was determined in YAMC cells treated with H(2)O(2). NE-silenced YAMC cells were also treated with H(2)O(2) and then measured for viability. Upregulated expression of serpin B1 in colonic mucosa was confirmed from patients with active ulcerative colitis. Immunohistochemical studies showed that serpin B1 expression was localized not only in inflammatory infiltration cells but also in epithelial cells. Serpin B1 mRNA expression was also increased in colonic mucosa of mouse DSS-induced colitis. Serpin B1-transfected YAMC cells were resistant against the treatment of H(2)O(2). H(2)O(2) treatment significantly induced NE in YAMC cells, and NE-silenced YAMC cells were also resistant against the treatment of H(2)O(2). These results suggest that serpin B1 may be a novel marker of active ulcerative colitis and may play an important role in the pathogenesis of inflammatory bowel disease.  相似文献   

11.
Ornithine decarboxylase (ODC), the first enzyme of polyamine metabolism, is rapidly upregulated in response to agents that induce a pathological cardiac hypertrophy. Transgenic mice overexpressing ODC in the heart (MHC-ODC mice) experience a much more dramatic left ventricular hypertrophy in response to β-adrenergic stimulation with isoproterenol (ISO) compared to wild-type (WT) controls. ISO also induced arginase activity in transgenic hearts but not in controls. The current work studies the cooperation between the cardiac polyamines and L-arginine (L-Arg) availability in MHC-ODC mice. Although ISO-induced hypertrophy is well-compensated, MHC-ODC mice administered L-Arg along with ISO showed a rapid onset of systolic dysfunction and died within 48 h. Myocytes isolated from MHC-ODC mice administered L-Arg/ISO exhibited reduced contractility and altered calcium transients, suggesting an alteration in [Ca(2+)] homeostasis, and abbreviated action potential duration, which may contribute to arrhythmogenesis. The already elevated levels of spermidine and spermine were not further altered in MHC-ODC hearts by L-Arg/ISO treatment, suggesting alternative L-Arg utilization pathways lead to dysregulation of intracellular calcium. MHC-ODC mice administered an arginase inhibitor (Nor-NOHA) along with ISO died almost as rapidly as L-Arg/ISO-treated mice, while the iNOS inhibitor S-methyl-isothiourea (SMT) was strongly protective against L-Arg/ISO. These results point to the induction of arginase as a protective response to β-adrenergic stimulation in the setting of high polyamines. Further, NO generated by exogenously supplied L-Arg may contribute to the lethal consequences of L-Arg/ISO treatment. Since considerable variations in human cardiac polyamine and L-Arg content are likely, it is possible that alterations in these factors may influence myocyte contractility.  相似文献   

12.
Inflammatory bowel disease arises from the interplay between luminal bacteria and the colonic mucosa. Targeted inhibition of pro-inflammatory pathways without global immunosuppression is highly desirable. Apolipoprotein (apo) E has immunomodulatory effects and synthetically derived apoE-mimetic peptides are beneficial in models of sepsis and neuroinflammation. Citrobacter rodentium is the rodent equivalent of enteropathogenic Escherichia coli, and it causes colitis in mice by colonizing the surface of colonic epithelial cells and inducing signaling events. We have reported that mice deficient in inducible nitric-oxide (NO) synthase (iNOS) have attenuated C. rodentium-induced colitis. We used young adult mouse colon (YAMC) cells that mimic primary colonic epithelial cells to study effects of an antennapedia-linked apoE-mimetic peptide, COG112, on C. rodentium-activated cells. COG112 significantly attenuated induction of NO production, and iNOS mRNA and protein expression, in a concentration-dependent manner. COG112 inhibited the C. rodentium-stimulated induction of iNOS and the CXC chemokines KC and MIP-2 to the same degree as the NF-kappaB inhibitors MG132 or BAY 11-7082, and there was no additive effect when COG112 and these inhibitors were combined. COG112 significantly reduced nuclear translocation of NF-kappaB, when assessed by electromobility shift assay, immunoblotting, and immunofluorescence for p65. This correlated with inhibition of both C. rodentium-stimulated IkappaB-alpha phosphorylation and degradation, and IkappaB kinase activity, which occurred by inhibition of IkappaB kinase complex formation rather than by a direct effect on the enzyme itself. These studies indicate that apoE-mimetic peptides may have novel therapeutic potential by inhibiting NF-kappaB-driven proinflammatory epithelial responses to pathogenic colonic bacteria.  相似文献   

13.
Colon carcinomas appear to arise from the cumulative effect of mutations to several genes (APC, DCC, p53, ras, hMLH1, and hMSH2). By using novel colonic epithelial cell lines derived from the Immorto mouse, named the YAMC (young adult mouse colon) cell line, and an Immorto-Min mouse hybrid, named the IMCE (Immorto-Min colonic epithelial) cell line, carrying the Apc min mutation, we investigated the effect of an activated v-Ha-ras gene on tumor progression. The YAMC and IMCE cell lines are normal colonic epithelial cell lines which are conditionally immortalized by virtue of expression of a temperature-sensitive simian virus 40 (SV40) large T antigen. Under conditions which permit expression of a functional SV40 large T antigen (33 degrees C plus gamma interferon), neither the YAMC nor the IMCE cell line grows in soft agar or is tumorigenic in nude mice. In vitro, when the SV40 large T antigen is inactivated (39 degrees C without gamma interferon), the cells stop proliferating and die. By infecting the YAMC and IMCE cell lines with a replication-defective psi2-v-Ha-ras virus, we derived cell lines which overexpress the v-Ha-ras gene (YAMC-Ras and IMCE-Ras). In contrast to the parental cell lines, under conditions in which the SV40 large T antigen is inactive, both the YAMC-Ras and IMCE-Ras cell lines continue to proliferate. Initally YAMC-Ras cells do not form tumors; however, tumors are visible after 90 days of incubation. IMCE-Ras cells form colonies in soft agar under both permissive and nonpermissive culture conditions. Furthermore, IMCE-Ras cells form tumors in nude mice within 3 weeks. The phenotype of the IMCE-Ras cell line thus clearly demonstrates that a defective Apc allele and an activated ras gene are sufficient to transform normal colonic epithelial cells and render them tumorigenic.  相似文献   

14.
We previously showed that ornithine was mainly transported via cationic amino acid transporter (CAT)-1 in human retinal pigment epithelial (RPE) cell line, human telomerase RT (hTERT)-RPE, and that CAT-1 was involved in ornithine cytotoxicity in ornithine--aminotransferase (OAT)-deficient cell produced by a OAT specific inhibitor, 5-fluoromethylornithine (5-FMO). We showed here that CAT-1 mRNA expression was increased by ornithne in OAT-deficient RPE cells, which was reversed by an inhibitor of ornithine decarboxylase (ODC), -difluoromethylornithine (DFMO). Polyamines, especially spermine, one of the metabolites of ODC, also enhanced the expression of CAT-1 mRNA. ODC mRNA expression was also increased by ornithine and polyamines, and gene silencing of ODC by siRNA decreased ornithine transport activity and its cytotoxicity. In addition, the mRNA of nuclear protein c-myc was also increased in 5-FMO- and ornithine-treated hTERT-RPE cells, and gene silencing of c-myc prevented the induction of CAT-1 and ODC. Increases in expression of CAT-1, ODC, and c-myc, and the inhibition of these stimulated expression by DFMO were also observed in primary porcine RPE cells. These results suggest that spermine plays an important role in stimulation of mRNA expression of CAT-1, which is a crucial role in ornithine cytotoxicity in OAT-deficient hTERT-RPE cells. ornithine transport; ornithine decarboxylase; c-myc  相似文献   

15.
16.
The activity of arginase converting arginine into ornithine and urea is of particular interest among many factors regulating NO production in the cells. It is known that by competing with NO-synthase for common substrate, arginase can affect the NO synthesis. In the present work, the properties of arginase from the frog Rana temporaria L. urinary bladder epithelial cells possessing the NO-synthase activity were characterized, and possible contribution of arginase to regulation of NO production by epithelial cells was studied. It has been shown that the enzyme had the temperature optimum in the range of 55-60 degrees C, K(m) for arginine 23 mM, and V(max) about 10 nmol urea/mg protein/min, and its activity was effictively inhibited by (S)-(2-boronoethyl)-L-cysteine (BEC), an inhibitor of arginase, at concentrations from 10(-6) to 10(-4) M. The comparison of arginase activity in various frog tissues revealed the following pattern: liver > kidney > brain > urinary bladder (epithelium) > heart > testis. The arginase activity in the isolated urinary bladder epithelial cells was 3 times higher than that in the intact urinary bladder. To evaluate the role of arginase in the regulation of NO production, epithelial cells were cultivated in the media L-15 or 199 containing different amounts of arginine; the concentration of NO2-, the stable NO metabolite, was determined in the culture fluid after 18-20 h of cells incubation. The vast majority of the produced nitrites are associated with the NOS activity, as L-NAME, the NOS-inhibitor, decreased their accumulation by 77.1% in the L-15 medium and by 80% in 199 medium. BEC (10(-4) M) increased the nitrite production by 18.0 % +/- 2.7 in the L-15 medium and by 24.2 +/- 3.5 in the 199 medium (p < 0.05). The obtained data indicate a relatively high arginase activity in the frog urinary bladder epithelium and its involvement in regulation of NO production by epithelial cells.  相似文献   

17.
Protection of colonic epithelial integrity and function is critical, because compromises in mucosal functions can lead to adverse and potentially life-threatening effects. The gut flora may contribute to this protection, in part, through the sustained induction of cytoprotective heat shock proteins (HSPs) in surface colonocytes. In this study, we investigated whether Escherichia coli LPS mediates bacteria-induced HSP by using cultured young adult mouse colon (YAMC) cells, an in vitro model of the colonic epithelium. E. coli LPS led to an epithelial cell-type specific induction of HSP25 in a time- and concentration-dependent manner, an effect that did not involve changes in HSP72. YAMC cells expressed the toll-like receptors (TLR)2 and TLR4 but not the costimulatory CD14 molecule. Whereas LPS stimulated both the p38 and ERK1/2 but not the stress-activated protein kinase/c-Jun NH(2)-terminal kinase, signaling pathways in the YAMC cells, all three were stimulated in RAW macrophage cells (in which no LPS-induced HSP25 expression was observed). The p38 inhibitor SB-203580 and the MAP kinase kinase-1 inhibitor PD-98059 inhibited HSP25 induction by LPS. LPS treatment also conferred protection against actin depolymerization induced by the oxidant monochloramine. The HSP25 dependence of the LPS protective effect was outlined in inhibitor studies and through adenovirus-mediated overexpression of HSP25. In conclusion, LPS may be an important mediator of enteric bacteria-induced expression of intestinal epithelial HSP25, an effect that may contribute to filamentous actin stabilization under physiological as well as pathophysiological conditions and thus protection of colonic epithelial integrity.  相似文献   

18.
Inflammatory bowel diseases and infectious gastroenteritis likely occur when the integrity of intestinal barriers is disrupted allowing luminal bacterial products to cross into the intestinal mucosa, stimulating immune cells and triggering inflammation. While specific Toll-like receptors (TLR) are involved in the generation of inflammatory responses against enteric bacteria, their contributions to the maintenance of intestinal mucosal integrity are less clear. These studies investigated the role of TLR2 in a model of murine colitis induced by the bacterial pathogen Citrobacter rodentium . C. rodentium supernatants specifically activated TLR2 in vitro while infected TLR2–/– mice suffered a lethal colitis coincident with colonic mucosal ulcerations, bleeding and increased cell death but not increased pathogen burden. TLR2–/– mice suffered impaired epithelial barrier function mediated via zonula occludens (ZO)-1 in naïve mice and claudin-3 in infected mice, suggesting this could underlie their susceptibility. TLR2 deficiency was also associated with impaired production of IL-6 by bone marrow-derived macrophages and infected colons cultured ex vivo . As IL-6 has antiapoptotic and epithelial repair capabilities, its reduced expression could contribute to the impaired mucosal integrity. These studies report for the first time that TLR2 plays a critical role in maintaining intestinal mucosal integrity during infection by a bacterial pathogen.  相似文献   

19.
L-Arginine is a semi-essential amino acid that is metabolized to important regulatory molecules. L-Arginine is transported into vascular smooth muscle cells (SMC) by the cationic amino acid transporter (CAT) family of proteins where it is metabolized to nitric oxide (NO), polyamines, or L-proline. Inflammatory mediators, growth factors, and hemodynamic forces stimulate the transport of L-arginine in vascular SMC by inducing CAT gene expression. However, they exert highly specific and divergent regulatory effects on L-arginine metabolism. Inflammatory cytokines induce the expression of inducible NO synthase (iNOS) and direct the metabolism of L-arginine to the antiproliferative gas, NO. In contrast, growth factors stimulate the expression of arginase I and ornithine decarboxylase (ODC) and channel the metabolism of L-arginine to growth stimulatory polyamines. Alternatively, cyclic mechanical strain blocks both iNOS and ODC activity and stimulates arginase I gene expression, directing the metabolism of L-arginine to the formation of L-proline and collagen. Thus, specific biochemical and biophysical stimuli that are found in the circulation regulate the transport and metabolism of L-arginine in vascular SMC. The ability of these physiologically relevant stimuli to upregulate L-arginine transport and generate specific L-arginine metabolites modulates SMC function and may influence the development of vascular disease.  相似文献   

20.
Myeloid-derived suppressor cells are a major mechanism of tumor-induced immune suppression in cancer. Arginase I-producing myeloid-derived suppressor cells deplete l-arginine (L-Arg) from the microenvironment, which arrests T cells in the G(0)-G(1) phase of the cell cycle. This cell cycle arrest correlated with an inability to increase cyclin D3 expression resulting from a decreased mRNA stability and an impaired translation. We sought to determine the mechanisms leading to a decreased cyclin D3 mRNA stability in activated T cells cultured in medium deprived of L-Arg. Results show that cyclin D3 mRNA instability induced by L-Arg deprivation is dependent on response elements found in its 3'-untranslated region (UTR). RNA-binding protein HuR was found to be increased in T cells cultured in medium with L-Arg and bound to the 3'-untranslated region of cyclin D3 mRNA in vitro and endogenously in activated T cells. Silencing of HuR expression significantly impaired cyclin D3 mRNA stability. L-Arg deprivation inhibited the expression of HuR through a global arrest in de novo protein synthesis, but it did not affect its mRNA expression. This alteration is dependent on the expression of the amino acid starvation sensor general control nonderepressible 2 kinase. These data contribute to an understanding of a central mechanism by which diseases characterized by increased arginase I production may cause T cell dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号