首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Piperine, an alkaloid present in the fruits of commonly used spice pepper, is known to impair reproductive functions. In the present study, piperine was administered to adult male rats at the dose levels of 1, 10, and 100 mg/kg body weight for 30 days to evaluate its effects on the testis. A significant decrease in the activities of antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the testis was observed at 10 and 100 mg of piperine administration when compared with the controls. A dose‐dependent increase in lipid peroxidation and hydrogen peroxide generation was also observed. Sialic acid levels in the testis were also found to be decreased when piperine was administered at 10 and 100 mg dose levels. Immunofluorescence studies demonstrated a dose‐dependent increase in caspase 3 and Fas protein in testicular germ cells after piperine treatment. These observations indicate that piperine induces oxidative stress and thereby triggers apoptosis in the testis, contributing to hampered reproductive functions. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:382–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20251  相似文献   

2.
Role of Sertoli cells in injury-associated testicular germ cell apoptosis   总被引:5,自引:0,他引:5  
This review examines experimental models of Sertoli cell injury resulting in germ cell apoptosis. Since germ cells exist in an environment created by Sertoli cells, paracrine signaling between these intimately associated cells must regulate the process of germ cell death. Germ cell apoptosis may be signaled by a decrease in Sertoli cell pro-survival factors, an increase in Sertoli cell pro-apoptotic factors, or both. The different models of Sertoli cell injury indicate that spermatogenesis is susceptible to disruption, and that targeting critical Sertoli cell functions can lead to rapid and massive germ cell death.  相似文献   

3.
In order to understand the pathogenesis of estradiol induced effects in the seminiferous epithelium, studies were undertaken in adult rats with estradiol-3-benzoate administered for different durations. After 30 d of treatment, a significant rise in lipid peroxidation with concomitant fall in the activities of superoxide dismutase and catalase was observed. Both, serum and intra-testicular testosterone levels were found severely depleted. Seminiferous epithelium was devoid of elongated spermatids and spermatozoa by 30 d of treatment. Number of spermatocytes and round spermatids were significantly (p < 0.001) reduced. Flowcytometric analysis confirmed a drastic reduction of the haploid cell population (1c peak). Beginning from day 10 of treatment, there was a consistent rise in the number of pyknotic/apoptotic germ cells in the seminiferous epithelium. A gradual increase in Bax protein expression was observed with the duration of treatment. The shift in Bax immunostaining from the cytoplasm and nucleus of germ cells (at 10 d of treatment) to only nuclei of cells by 30 d of treatment was also noticed. By this time testicular tissue showed three-fold increase in caspase-8 enzyme activity. Viable testicular cells isolated in vitro decreased drastically subsequent to different periods of estradiol treatment. The above findings substantiate the fact that the testicular pathogenesis of estradiol benzoate treatment may be primarily because of altered reproductive hormone levels and high oxidative stress leading to germ cell apoptosis and subsequent germ cell loss in the seminiferous epithelium.  相似文献   

4.
The mRNA of the mitochondrial uncoupling protein 2 (UCP2) was up-regulated by cryptorchidism, a testicular hyperthermic condition under which germ cells undergo severe apoptosis. We investigated whether UCP2 was able to protect germ cells from hyperthermia-induced apoptosis. UCP2 was predominantly present in elongate spermatids under normal conditions, and was detected in all germ cells with its level significantly increased if the testes were exposed to 43 degrees C for 5 min. Such a short heat exposure was non-lethal and enabled the preconditioned cells to be resistant to apoptosis induced by a longer hyperthermic treatment (15 min). While hyperthermia resulted in oxidative stress in mouse testes, it did not change the total anti-oxidative capacity. Indeed, overexpression of UCP2 in the GC-2 germ cell line protected the cells from radical oxygen species (ROS)-induced apoptosis. Taken together, we propose that UCP2 may represent an effective weaponry used by germ cells to combat ROS-induced apoptosis.  相似文献   

5.
Cimetidine, an H? receptor antagonist used for treatment of gastric ulcers, exerts antiandrogenic and antiangiogenic effects. In the testes cimetidine impairs spermatogenesis, Sertoli cells and peritubular tissue, inducing apoptosis in the myoid cells. Regarding the importance of histamine and androgens for vascular maintenance, the effect of cimetidine on the structural integrity of the testicular vasculature was evaluated. Adult male rats received cimetidine (CMTG) and saline (CG) for 50 days. The testes were fixed in buffered 4% formaldehyde and embedded in historesin and paraffin. In the PAS-stained sections, the microvascular density (MVD) and the vascular luminal area (VLA) were obtained. TUNEL method was performed for detection of cell death. Testicular fragments embedded in Araldite were analyzed under transmission electron microscopy. A significant decrease in the MVD and VLA and a high number of collapsed blood vessel profiles were observed in CMTG. Endothelial cells and vascular muscle cells were TUNEL-positive and showed ultrastructural features of apoptosis. These results indicate that cimetidine induces apoptosis in vascular cells, leading to testicular vascular atrophy. A possible antagonist effect of cimetidine on the H? receptors and/or androgen receptors in the vascular cells may be responsible for the impairment of the testicular microvasculature.  相似文献   

6.
Testicular cancer is the most common cancer among young men of reproductive age. Bleomycin is a frequently used drug for the treatment of several malignancies and is part of the chemotherapy protocols in testicular cancer. Bleomycin causes an increase in oxidative stress which has been shown to induce apoptosis in cancer cells. Curcumin (diferuloylmethane), an active component of the spice turmeric, has attracted interest because of its anti-inflammatory and chemopreventive activities. However, no study has been carried out so far to elucidate its interaction with bleomycin in testicular cancer cells. In this study, we investigated the effects of curcumin and bleomycin on apoptosis signalling pathways and compared the effects of bleomycin with H2O2 which directly produces reactive oxygen species. We measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and Cyt-c levels in NCCIT cells incubated with curcumin (5 μM), bleomycin (120 μg/ml), bleomycin + curcumin, H2O2 (35 μM), and H2O2 + curcumin for 72 h. Curcumin, bleomycin, and H2O2 caused apoptosis indicated as increases in caspase-3, caspase-8, and caspase-9 activities and Bax and cytoplasmic Cyt-c levels and a decrease in Bcl-2 level. Concurrent use of curcumin with bleomycin decreased caspase activities and Bax and Cyt-c levels compared to their separate effects in NCCIT cells. Our findings suggest that concurrent use of curcumin during chemotherapy in testis cancer should be avoided due to the inhibitory effect of curcumin on bleomycin-induced apoptosis.  相似文献   

7.
The number and type of testicular germ cells undergoing apoptosis in different age groups of mice (from 7 to 360 days of age) was determined and compared in age-matched wild type (WT) control and in a transgenic (TG) mice homozygous to rat androgen binding protein (ABP) using flow cytometry. Flow cytometric quantification revealed that the total number of germ cells undergoing apoptosis did not differ significantly in WT and TG mice up to Day 14. From Day 21 to Day 60, the number of germ cells undergoing apoptosis was consistently higher in TG than in WT mice. Starting from Day 90, the number of germ cells undergoing apoptosis in TG mice was lower than controls until Day 360. In 21–60 days old TG mice, spermatogonia, S-Phase cells, and primary spermatocytes are the cell types undergoing apoptosis at significantly greater numbers than those in WT mice. However, starting from day 60, the total number of spermatids undergoing apoptosis was significantly lower in TG mice than in age-matched WT controls. TdT-mediated dUTP-biotin nick end labeling (TUNEL) in testicular sections from TG mice of 21 and 30 days of age confirmed the presence of increased numbers of apoptotic germ cells compared to their age matched controls.  相似文献   

8.
9.

Background  

Cimetidine, refereed as antiandrogenic drug, causes hormonal changes in male patients such as increased testosterone and FSH levels. In the rat testis, structural alterations in the seminiferous tubules have been related to germ cell loss and Sertoli cell death by apoptosis. Regarding the important role of Sertoli cells in the conversion of testosterone into estrogen, via aromatase, the immunoexpression of estrogen receptors-beta (ERbeta) was evaluated in the germ cells of untreated and treated rats with cimetidine. A relationship between ERbeta immunoreactivity and apoptosis was also investigated in the germ cells of damaged tubules.  相似文献   

10.
Germ-cell depletion was induced in rats by busulphan administration during the fetal period (Group B). Although a sigmoidal increase of serum testosterone concentration was observed 1 h after the administration of graded doses of hCG (0.3-15.0 i.u./100 g body weight) in intact rats and those in Group B, a shift in the dose-response curve to the right was observed in the latter, suggesting that the sensitivity of testicular response to gonadotrophin was lower in germ cell-depleted rats. However, since the sensitivity was almost identical for both groups of rats for isolated Leydig cells incubated in vitro for 3 h with hCG (0.5-312.5 i.u./ml), the intrinsic nature of the cells was not affected in Group B rats. When the responses of testicular tissue blocks were examined in the in-vitro incubation system, reduced sensitivity reappeared for those from Group B rats, and the presence of testicular tissue components including seminiferous tubules was considered to be responsible for the difference in Leydig cell sensitivity between intact rats and those exposed to busulphan. By the combination of in-vivo and in-vitro experiments, we have demonstrated that germ cells are involved in the endocrine function of the testis.  相似文献   

11.
Functional role of caspases in heat-induced testicular germ cell apoptosis   总被引:3,自引:0,他引:3  
In the present study, we determined whether a pan caspase inhibitor could prevent or attenuate heat-induced germ cell apoptosis. Groups of five adult (8 wk old) C57BL/6 mice pretreated with vehicle (DMSO) or Quinoline-Val-Asp (Ome)-CH2-O-Ph (Q-VD-OPH), a new generation broad-spectrum caspase inhibitor, were exposed once to local testicular heating (43 degrees C for 15 min) and killed 6 h later. The inhibitor (40 mg/kg body weight) or vehicle was administered intraperitoneally (i.p.) 1 h before local testicular heating. Germ cell apoptosis was detected by TUNEL assay and quantitated as number of apoptotic germ cells per 100 Sertoli cells at stages XI-XII. Compared with controls (16.8 +/- 3.1), mild testicular hyperthermia within 6 h resulted in a marked activation (277.3 +/- 21.6) of germ cell apoptosis, as previously reported by us. Q-VD-OPH at this dose markedly inhibited caspase 3 activation and significantly prevented (by 67.0%) heat-induced germ cell apoptosis. Q-VD-OPH-mediated rescue of germ cells was independent of cytosolic translocation of mitochondrial cytochrome c and DIABLO. Electron microscopy further revealed normal appearance of these rescued cells. Similar protection from heat-induced germ cell apoptosis was also noted after pretreatment with minocycline, a second-generation tetracycline that effectively inhibits cytochrome c release and, in turn, caspase activation. Collectively, the present study emphasizes the role of caspases in heat-induced germ cell apoptosis.  相似文献   

12.
Fibroblast growth factor (FGF) is established as an initiator of signaling events critical for neurogenesis and mesoderm formation during early Xenopus embryogenesis. However, less is known about the role FGF signaling plays in endoderm specification. Here, we show for the first time that endoderm-specific genes are induced when FGF signaling is blocked in animal cap explants. This block of FGF signaling is also responsible for a significant enhancement of endodermal gene expression in animal cap explants that are injected with a dominant-negative BMP-4 receptor (DNBR) RNA or treated with activin, however, neural and mesoderm gene expression is diminished. Consistent with these results, the injection of dominant-negative FGF receptor (DNFR) RNA expands endodermal cell fate boundaries while FGF treatment dramatically reduces endoderm in whole embryos. Taken together, these results indicate that inhibition of FGF signaling promotes endoderm formation, whereas the presence of active FGF signaling is necessary for neurogenesis/mesoderm formation.  相似文献   

13.
Like other arteriviruses, porcine reproductive and respiratory syndrome virus (PRRSV) is shed in semen, a feature that is critical for the venereal transmission of this group of viruses. In spite of its epidemiological importance, little is known of the association of PRRSV or other arteriviruses with gonadal tissues. We experimentally infected a group of boars with PRRSV 12068-96, a virulent field strain. By combined use of in situ hybridization and immunohistochemistry, we detected infection by PRRSV in the testes of these boars. The PRRSV testicular replication in testis centers on two types of cells: (i) epithelial germ cells of the seminiferous tubules, primarily spermatids and spermatocytes, and (ii) macrophages, which are located in the interstitium of the testis. Histopathologically, hypospermatogenesis, formation of multinucleated giant cells (MGCs), and abundant germ cell depletion and death were observed. We obtained evidence that such germ cell death occurs by apoptosis, as determined by a characteristic histologic pattern and evidence of massive DNA fragmentation detected in situ (TUNEL [terminal deoxynucleotidyltransferase-mediated digoxigenin-UTP nick end labeling] assay). Simultaneously with these testicular alterations, we observed that there is a significant increase in the number of immature sperm cells (mainly MGCs, spermatids, and spermatocytes) in the ejaculates of the PRRSV-inoculated boars and that these cells are infected with PRRSV. Our results indicate that PRRSV may infect target cells other than macrophages, that these infected cells can be primarily responsible for the excretion of infectious PRRSV in semen, and that PRRSV induces apoptosis in these germ cells in vivo.  相似文献   

14.
In mammals, retinoic acid is involved in the regulation of testicular function by interaction with two families of nuclear receptors, retinoic acid receptor (RAR) and retinoid X receptor (RXR). Among RAR isoforms, the testicular cells of the lizard were found to express only RARalpha (3.7 kb) and RARbeta (3.4 kb) mRNAs, as reported here. In this study, the effects of exogenous all-trans-retinoic acid (atRA) on spermatogenesis of a non-mammalian seasonal reproducer were investigated. Daily intraperitoneal injections of atRA or atRA plus testosterone (atRA+T) were given for 2 weeks to adult males of the lizard Podarcis sicula. In animals treated with atRA, the seminiferous tubules were markedly reduced in cross-area. The seminiferous epithelium collapse was responsible for a sensible reduction in the number of germ cells and disruption in normal epithelial organization. In comparison, in atRA+T-treated lizards the loss of germinal cells was significantly less. The loss of germ cells observed in both experimental groups results from an induction of apoptotic process, as revealed by TUNEL analysis. Although low in number, apoptotic germ cells were also observed in the control groups (saline- and T-treated lizard), where the main germ cells undergoing apoptosis are primary spermatocytes (most frequently) and some spermatogonia.In conclusion, it is shown here that retinoic acid has deleterious effects on lizard spermatogenesis, causing a severe depletion of seminiferous epithelium, probably via induction of apoptotic processes. These effects are not completely inhibited by simultaneous administration of testosterone, although this hormone, once injected, is able to stimulate spermatogenesis and protect germinal cells from apoptotic cell death.  相似文献   

15.
Testicular lipids act as source of energy, structural components of spermatozoa and precursors of androgen biosynthesis. Treatment with antispermatogeneic agents cause accumulation of testicular lipids. Gossypol, an effective antispermatogenic agent causes marked accumulation of testicular neutral lipids. It did not affect testicular phospholipids. Gossypol treatment did not bring about marked changes in the key enzymes like HMG Co A reductase, glucose-6-phosphate dehydrogenase malic enzyme and cytosolic isocitrate dehydrogenase involved in sterol biosynthesis. Thus, gossypol brings about marked accumulation of glycerides and esterified cholesterol in the testis due to its effect on spermatogenic elements of adult rats.  相似文献   

16.
Undernutrition during suckling was induced in newborn rats by increasing the litter size to sixteen pups to be fed by one mother. Animals reared in litters of eight served as controls. Undernourished animals showed retarded body and testicular growth during a suckling period of 22 days. Sequential morphogenesis of the testis was not altered up to 15 days of age. However, certain morphological alterations in Sertoli cells and Leydig cells were observed from 15 days onwards. Cell generation cycle of spermatogonial germ cells and supporting cells (future Sertoli cells) on day 9 showed marked prolongation of DNA synthetic phase (S), unaltered post-DNA synthetic phase (G2) and total cycle (Tc) and shortening of the pre-DNA synthetic phase (G1) indicating a depression in DNA synthesis in undernutrition.  相似文献   

17.
Transgenic mice carrying rat androgen-binding protein (ABP) genomic DNA express high amounts of testicular ABP and develop a progressive impairment of spermatogenesis. To understand the mechanism of these changes, we have studied the pattern of testicular germ cell proliferation from 7 to 360 days of age in wild-type (WT) control and transgenic homozygous (ABP-TG) mice by flow cytometry after labeling DNA in isolated germ cells with propidium iodide. At all ages studied, the body weight of the ABP-TG mice was lower than that of age-matched WT controls. Significantly reduced testicular weight and total germ cell number in the ABP-TG mice were evident from Day 30 and Day 60, respectively. Flow cytometric analysis of isolated germ cells revealed that the number of germ cells undergoing proliferation (S-phase cells) was identical in WT control and ABP-TG mice up to Day 14. Subsequently, the number of germ cells in S-phase was consistently higher in ABP-TG than in WT mice. The number of primary spermatocytes was significantly increased starting from Day 60, and the numbers of round and elongated spermatids were significantly reduced in the ABP-TG animals from Day 21 and Day 60 onwards, respectively. Immunocytometry for intracellular ABP at 90 days of age revealed that the percentage of ABP-containing germ cells was greater in ABP-TG than in WT mice. The continuous presence of ABP in mouse seminiferous tubules at greater than physiological concentrations facilitates the formation of primary spermatocytes but impairs subsequent transformation to round and elongated spermatids. Based on our observations and the analysis of the available literature, the most likely mechanism for production of these effects is sustained reduction in the bioavailability of androgens.  相似文献   

18.
Seasonal cycles of testicular activity occur in many mammals and can include transitions between total arrest and recrudescence of spermatogenesis. We hypothesize that involution and reactivation of testis result from two antagonistic processes, proliferation and programmed cell death (apoptosis), which are activated at different times. To test this hypothesis, quantitative measurements of both proliferation-specific marker and apoptotic produced nucleosomes have been compared with sperm and testosterone production in testes from adult roe deer during breeding and non-breeding seasons (May to September). Testes of brown hare were included from periods of testes regression (June to August) and recrudescence (November to December). The highest testicular weights in roe deer were found in the rutting period from late July to early August (27.25 +/- 8.56 g), corresponding with the highest number of testicular sperm/g parenchyma. The peak of sperm production coincided with a peak in testosterone concentration (1.19 +/- 0.53 microg/g testis). The maximum level of proliferation-specific marker was also found during the breeding season (98.6 +/- 58.2 U/g testis in comparison to 20.1 +/- 22.0 U/g in the prerutting period). In contrast, the most significant apoptosis was observed in the nonbreeding season than the breeding period (71.11 +/- 5.79 U/mg testis and 18.88 +/- 6.79 U/mg, respectively). Testicular proliferation was low in the brown hare (0.061 +/- 0.062 U/g) during involution of the testes. It was newly activated in November and December (0.85 +/- 0.33 U/g), preceding the increase in testicular volume. Testosterone production increased in conjunction with testicular proliferation. At this time, testicular apoptosis was significantly lower (14.16 +/- 2.12 U/mg testis) than during the period of pronounced testicular regression (30.16 +/- 19.95 U/g). These results suggest that regulation of seasonal testicular activity is characterized by an inverse relationship of proliferation and apoptosis.  相似文献   

19.
Oxidative stress has been shown to induce apoptosis in cancer cells. Therefore, one might suspect that antioxidants may inhibit reactive oxygen species (ROS) and prevent apoptosis of cancer cells. No study has been carried out so far to elucidate the effects of N-acetylcysteine (NAC) on bleomycin-induced apoptosis in human testicular cancer (NCCIT) cells. We investigated the molecular mechanisms of apoptosis induced by bleomycin and the effect of NAC in NCCIT cells. We compared the effects of bleomycin on apoptosis with H2O2 which directly produces ROS. Strong antioxidant NAC was evaluated alone and in combination with bleomycin or H2O2 in germ cell tumor-derived NCCIT cell line (embryonal carcinoma, being the nonseminomatous stem cell component). We determined the cytotoxic effect of bleomycin and H2O2 on NCCIT cells and measured apoptosis markers such as caspase-3, caspase-8, and caspase-9 activities and Bcl-2, Bax, and cytochrome c (Cyt-c) levels in NCCIT cells incubated with bleomycin, H2O2, and/or NAC. We found half of the lethal dose (LD50) of bleomycin on NCCIT cell viability as 120???g/ml after incubation for 72?h. Incubation with bleomycin (LD50) induced increases in caspase-3, caspase-8, and caspase-9 activities and Cyt-c and Bax protein levels and a decrease in Bcl-2 level. Co-incubation of NCCIT cells with bleomycin and 10?mM NAC abolished bleomycin-induced increases in caspase-3 and caspase-9 activities, Bax, and Cyt-c levels and bleomycin-induced decrease in Bcl-2 level. Our results indicate that bleomycin induces apoptosis in NICCT cells and that NAC diminishes bleomycin-induced apoptosis via inhibiting the mitochondrial pathway. We conclude that NAC has negative effects on bleomycin-induced apoptosis in NICCT cells and causes resistance to apoptosis, which is not a desirable effect in the fight against cancer.  相似文献   

20.
Isolated pachytene spermatocytes liver longer than round spermatids in vitro. Indigenous formation of oxygen-derived free radicals and hydrogen peroxide can cause damage to germ cells. The germ cell antioxidant capacity may play an important role in this respect. In view of this, we have examined the activity and cellular localization of superoxide dismutase (SOD) and glutathione S-transferases (GST) in rat testicular cells. We have found significant differences in the distribution of these enzymatic activities in the germ cells. In addition, this study shows that alpha-tocopherol is found in various amounts in rat testicular cells in the order of: Sertoli cells greater than pachytene spermatocytes greater than round spermatids, with a factor of 4 in the alpha-tocopherol content between Sertoli cells and round spermatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号