首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented for the presence of multiple cyclic AMP binding components in the plasma membrane and cytosol fractions of porcine renal cortex and medulla. N6-(Ethyl-2-diazomalonyl)-3′,5′-adenosine monophosphate, a photoaffinity label for cyclic AMP binding sites, exhibits non-covalent binding characteristics similar to cyclic AMP in membrane and soluble fractions. Binding data for either compound to the plasma membrane fraction yields biphasic Scatchard plots while triphasic plots are obtained with the dialyzed cytosol. When covalently labeled fractions are separated on SDS-polyacrylamide gel electrophoresis, the cyclic AMP photoaffinity label is found on 49 000 and 130 000 dalton components in each kidney fraction. DEAE-cellulose and gel filtration chromatography of the labeled cortical cytosol fraction establishes that the three components suggested by the binding data correspond to two 49 000 dalton species and a 130 000 component. The 49 000 species have higher affinities for cyclic AMP than the 130 000 component (Ka(1) = 2.0 · 109, Ka(2) = 1.7 · 108, Ka(3) = 1.0 · 107). The 49 000 components are associated with protein kinase activity while the 130 000 component does not exhibit protein kinase, adenosine deaminase, or cyclic nucleotide phosphodiesterase activity. Immunologic results and effects of phosphorylation and cyclic GMP on cyclic AMP binding further suggest that the 49 000 components are regulatory subunits of cyclic AMP-dependent protein kinases. Cyclic AMP binding to the 130 000 component is markedly inhibited by adenosine and adenine nucleotides, but not cyclic GMP. Thus, this component may reflect an aspect of adenosine control or metabolism which may or may not be a cyclic AMP-related cellular function.  相似文献   

2.
Cyclic AMP inhibits platelet aggregation induced by physiological agents. 8 Azido [32P]cyclic AMP (N3 cyclic AMP) has been utilized as a photoaffinity probe to define the cyclic AMP-binding proteins present in unperturbed human platelets and their subcellular fractions. Specificity of cyclic AMP binding was determined by contrasting binding in the presence and absence of excess unlabelled cyclic AMP, cyclic GMP and 5′-AMP. Binding was unaffected by 5′-AMP and obliterated by cyclic AMP. Four major species of binding proteins, 49 000, 42 000, 39 000, 37 000, were obtained in all platelet fractions (crude homeogenate, cytosol, membranes and granules). Two-dimensional gel electrophoresis of platelet cytosol resolved the major molecular weight species into 15 specific cyclic AMP binding proteins of four molecular weight classes differing by charge density. These studies suggest that platelets contain an array of specific cyclic AMP-binding proteins which may function in hemostatic regulation.  相似文献   

3.
The adenosine 3',5'-monophosphate receptor proteins of HeLa cells have been characterized. Using the Millipore filter assay, in the presence of 5'AMP and a phosphodiesterase inhibitor, specific [3H]cyclic AMP binding was detected in cytosol and in a nuclear-free particulate fraction, but not in nuclei. Both preparations exhibited biphasic Scatchard plots. 8-Azido[32P]cyclic AMP was used as a photoaffinity probe to covalently link ligand with receptor proteins. Proteins were then separated on denaturing gels and analyzed by autoradiography. The cytosol exhibited four specific binding proteins, with molecular weights of 46 000, 50 000, 52 000 and approx. 120 000. The 50 000/52 000 doublet could not be interconverted by phosphorylation-dephosphorylation reactions. On DEAE-cellulose, the 50 000-dalton protein eluted with peak II cyclic AMP-dependent protein kinase. The other proteins eluted with Peak I and with a binding peak not associated with kinase activity. Only the 50 000 protein was precipitated by type II protein kinase antibody from bovine heart. In the particulate fraction, the 120 000 protein was not detectable, but 8-azido[32P]cyclic AMP treatment revealed the other three proteins, with a relative increase in the 50 000-dalton protein. The results suggest that HeLa cells have four binding proteins which can associate with catalytic subunit and that the Peak I enzyme is heterogeneous, consisting of several distinct regulatory subunits.  相似文献   

4.
An adenosine 3':5'-monophosphate (cyclic AMP)-binding protein in the human erythrocyte plasma membrane was isotopically labeled using a photoaffinity analog of cyclic AMP, N6-(ethyl 2-diazomalonyl) cyclic [3H]AMP. The cyclic AMP-binding site is located in a polypeptide chain having a molecular weight of 48,000. Cyclic AMP-binding protein and cyclic AMP-dependent protein kinase were solubilized with 0.5% Triton X-100 in 56 mM sodium borate, pH 8, but 32P-labeled membrane phosphoproteins were retained in the Triton-insoluble fraction, suggesting that the membrane-associated binding protein is not a primary substrate for protein kinase. Triton-solubilized and membrane-associated protein kinase activities were stimulated 15- and 17-fold by cyclic AMP, suggesting that the degree of association between the catalytic anc cyclic AMP-binding components was very similar in both preparations. Fractionation and characterization of membrane phosphoproteins have shown that protein III and a co-migrating minor protein are substrates for protein kinase but membrane sialoglycoproteins are not phosphorylated.  相似文献   

5.
This study examined the binding of both cyclic AMP and cyclic GMP to receptor proteins in particulate and soluble subfractions of renal cortical homogenates from the golden hamster. The binding of both nucleotides was compared to subsequent effects of both nucleotides on the phosphorylation of histone from identical fractions. Cyclic AMP binding and cyclic AMP-dependent protein kinase activity predominated in the cytosol, with some binding and enzyme activity also detected in particulate fractions. Cyclic GMP and cyclic GMP-dependent protein kinase activity could only be demonstrated in cytosolic fractions and represented only 20-30% of cyclic AMP-dependent activity in this fraction. Binding of both nucleotides was highly specific, however, cyclic AMP showed some interaction with cyclic GMP binding. Evidence suggesting that each nucleotide interacts with a specific protein kinase was as follows: both the binding activity of the cyclic nucleotides and their combined protein kinase activity show additivity; cyclic AMP and cyclic GMP binding activity could be separated on sucrose gradients; cyclic AMP and cyclic GMP protein kinase activity could be separated with Sephadex G-100 chromatography, after preincubation of homogenate supernatants with either cyclic AMP or cyclic GMP. The results demonstrate the presence of both cyclic AMP- and cyclic GMP-dependent protein kinase in renal cortex.  相似文献   

6.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

7.
The effects of adenosine 3′ : 5′-monophosphate (cyclic AMP), guanosine 3′ : 5′-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P).While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10?5 M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP.Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10?8 M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10?8 M, while with cyclic AMP a concentration of 10?5 M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P.These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

8.
A photosensitive, radioactive analogue of cyclic adenosine monophosphate, 8-azido-adenosine 3′,5′-[32P]monophosphate (8-N3-cyclic AMP), was used to label the cyclic AMP binding proteins of Dictyostelium discoideum. During development cytosolic proteins appear which are specifically labeled by the photoaffinity agent. The proteins are developmentally regulated since they are only found in starved, developing cells. Unlabeled cyclic AMP competes specifically with the labeled analogue for protein binding sites in contrast to unlabeled 5′-AMP which does not compete. A mutant which develops spores but is deficient in stalk cell production produces a different set of cyclic AMP binding proteins from the parent strain.  相似文献   

9.
Pigeon heart microsomes contain three minor size protein kinase substrates of minimal molecular weights of 22 000, 15 000, and 11500, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the microsomes were partially loaded with calcium oxalate and subjected to rate zonal and isopycnic centrifugations in sucrose density gradient columns, the 22 000 and the 15 000 dalton proteins settled in the heaviest fraction, which was composed mainly of vesicles of sarcoplasmic reticular membranes; the 11 500 dalton protein was concentrated in the lightest fractions, which consisted chiefly of vesicles of sarcolemmal origin. During incubation of the membrane fractions with Mg [gamma-32P]ATP significant amounts of 32P were incorporated into all these proteins. Incorporation of 32P into the 15 000 dalton protein was moderately and 32P incorporation into the 22 000 dalton protein was markedly enhanced in the presence of exogenous soluble cyclic AMP-dependent protein kinase and cyclic AMP. The phosphorylation of the three proteins was virtually unaffected by Ca2+ concentrations up to 0.1 mM and by ethyleneglycol-bis-(beta-aminoethyl-ether)-N,N'-tetraacetic acid in the absence of added Ca2+. Phosphorylation of the 22 000 and the 11 500 dalton proteins occurred mainly at serine residues. In the 15 000 dalton protein threonine residues were the main site of endogenous phosphorylation. Nearly equal amounts of [32P]-phosphate were incorporated into threonine and serine residues of this protein, when phosphorylation was supported by exogenous cyclic AMP-dependent protein kinase and cyclic AMP. The 15 000 dalton protein could be removed from its membrane attachment by extraction with an acidic chloroform/methanol mixture. This step opens the way for the purification of this membrane-bound protein kinase substrate.  相似文献   

10.
Renal cortical plasma membranes were solubilized with sodium deoxycholate. The membrane-bound cyclic AMP receptors retained biologic activity in the detergent-dispersed state exhibiting the properties of high affinity for cyclic AMP, saturability and specificity. Half-maximal binding of cycle [3H]-AMP to these receptors was found to occur at 0.06 muM and 1.5 pmol of cyclic [3H]AMP was bound per mg membrane protein at saturation (0.5 muM cyclic [3H]AMP). Sodium deoxycholate-solubilized membrane proteins were chromatographed on Biogel A-5m. Cyclic [3H]AMP receptors eluted in the internal volume at positions equivalent to molecular sizes of 50 000 and 20 000 daltons and in the void volume at molecular size greater than 450 000. After photoaffinity labeling the renal membrane receptors with cyclic [3H]AMP, we found peaks of tritium radioactivity which eluted at similar molecular size positions on this Bogel A-5m column. Further treatment of photoaffinity labeled membranes with sodium dodecyl sulfate, mercaptoethanol and urea, followed by polyacrylamide gel electrophoresis, showed bands of tritium-labeled receptor protein with relative mobilities corresponding to molecular sizes of 26 000 and 21 000 daltons. This study shows that porcine renal cortical membranes contain at least two molecular species of cyclic AMP receptors which may be associated with regulation of the membrane-bound cyclic AMP-dependent protein kinase.  相似文献   

11.
Partial purification of cyclic AMP-binding proteins from porcine thyroid cytosol was performed by gel filtration on Bio Gel 1.5 m followed by ion exchange chromatography on DEAE Sephadex A25. Three fractions presenting cyclic AMP-binding activities were resolved by gel filtration (I, II, III). Approximate molecular weights were respectively 280 000, 145 000 and 65 000. Fraction I was further resolved into two peaks (Ialpha and Ibeta) on DEAE-Sephadex A25. Fractions I, Ialpha, Ibeta comigrated with protein kinase activity whereas peaks II and III did not. These fractions differed with respect to the folling characteristics: rate and stability of cyclic AMP binding to isolated fractions were differently affected by pH (4.0 or 7.5). Electrophoretic mobility on polyacrylamide gels (5%) of fractions preincubated with cyclic [3H]AMP showed similar mobilities for Ialpha, Ibeta or II (Rf 0.37) whereas fraction III displayed a much greater mobility (RF 0.73); Scatchard plots were linear for fractions Ialpha, II and III with an apparent Kd in the same range (2 to 5 nM) whereas fraction Ibeta generated a biphasic plot with Kd 0.4 nM and 20 nM; cyclic [3H] AMP added to fraction I, Ialpha or Ibeta generated a cyclic [3H] AMP-binding protein complex of lower molecular weight as shown by Sephadex G 150 filtration; on the basis of the elution volume, this complex was not distinguished from fraction II. In the course of this work, we separated at the first step of purification (Bio Gel 1.5 m) a protein kinase not associated with cyclic AMP binding activity which exhibited marked specificity for protamine as compared to histone II A.  相似文献   

12.
Phosphodiesterase activities for adenosine and guanosine 3':5'-monophosphates (cyclic AMP and cyclic GMP) were demonstrated in particulate and soluble fractions of rat anterior pituitary gland. Both fractions contained higher activity for cyclic GMP hydrolysis than that for cyclic AMP hydrolysis when these activities were assayed at subsaturating substrate concentrations. Addition of protein activator and CaCl2 to either whole homogenate, particulate or supernatant fraction stimulated both cyclic AMP and cyclic GMP phosphadiesterase activities. Almost 80% of cyclic AMP and 90% of cyclic GMP hydrolyzing activities were localized in soluble fraction. Particulate-bound cyclic nucleotide phosphodiesterase activity was completely solubilized with 1% Triton X-100. Detergent-dispersed particulate and soluble enzymes were compared with respect to Ca2+ and activator requirements and gel filtration profiles. Particulate, soluble and partially purified phosphodiesterase activities were also characterized in relation to divalent cation requirements, kinetic behavior and effects of Ca2+, activator and ethyleneglycol-bis-(2-aminoethyl)-N,N'-tetraacetic acid. Gel filtration of either sonicated whole homogenate or the 10500 X g supernatant fraction showed a single peak of activity, which hydrolyzed both cyclic AMP and cyclic GMP and was dependent upon Ca2+ and activator for maximum activity. Partially purified enzyme was inhibited by 1-methyl-3-isobutylxanthine and papaverine with the concentration of inhibitor giving 50% inhibition at 0.4 muM substrate being 20 muM and 24 muM for cyclic AMP and 7 muM and 10 muM for cyclic GMP, respectively. Theophylline, caffeine and theobromine were less effective. The rat anterior pituitary also contained a protein activator which stimulated both pituitary cyclic nucleotide phosphodiesterase(s) as well as activator-deficient brain cyclic GMP and cyclic AMP phosphodiesterases. Chromatography of the sonicated pituitary extract on DEAE-cellulose column chromatography resolved the phosphodiesterase into two fractions. Both enzyme fractions hydrolyzed cyclic AMP and cyclic GMP and had comparable apparent Km values for the two nucleotides. Hydrolysis of cyclic GMP and cyclic AMP by fraction II enzyme was stimulated 6--7-fold by both pituitary and brain activator in the presence of micromolar concentrations of Ca2+.  相似文献   

13.
Protein kinase associated with rat liver microsomes was only partly extracted by treatment with 1.5 M KCl. The enzyme was solubilised by Triton X-100 or sodium deoxycholate at the same or slightly higher detergent concentrations than microsomal marker components. The enzyme activity increased 2-3 fold upon solubilisation. Three peaks with protein kinase activity (fractions MI, MII and MIII) were resolved on DEAE-cellulose chromatography. Fraction MIII but not fractions MI or MII was activated by adenosine 3':5'-monophosphate (cyclic AMP). All fractions catalysed the phosphorylation of protamine and histones but not that of casein or phosvitin. Fractions MI and MIII had a similar substrate specificity and phosphorylated histones at a relatively much higher rate than did fraction MII. The isoelectric points were 8.1 for fraction MI, 5.5 for fraction MII and 4.9 for fraction MIII. On incubation of fraction MIII with cyclic AMP it was split into two catalytically active components with pI 8.1 and 7.35. The component with pI 8.1 was predominant and corresponded to fraction MI. Five protein kinase peaks were resolved from rat liver cytosol by DEAE-cellulose chromatography. Three of them (fractions CIa, CIIb and CIII) had the same properties as each of the microsomal kinase fractions. A forth fraction (CIIa) was cyclic-AMP-dependent and had the same substrate specificity as fractions MI and MIII. Its pI was 5.1, and it was split into two components by cyclic AMP (pI 8.1 and 7.35). In binding studies fraction CIIb bound more efficiently to microsomes than fraction CIII, while fractions CIa, CIIa and the microsomal protein kinase fractions did not bind appreciably. When microsomes were treated with trypsin exposed protein kinase was inactivated and the latency of the remaining enzyme increased substantially. Most of fraction MII was inactivated by trypsin while fraction MIII was resistant. The possible orientation of protein kinase fractions MII and MIII in the microsomal membrane is discussed.  相似文献   

14.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site. The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP. Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 4 . 10(-8) M) belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2--5 . 10(-6) M) was demonstrated by the inhibitory effect of 10(-5) M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

15.
The calmodulin-dependent cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase (EC 3.1.4.17) activity of rat pancreas was purified 280-fold by affinity chromatography on calmodulin-Sepharose 4B. It then accounted for 15% of the total cytosol cyclic GMP nucleotide phosphodiesterase activity, in the presence of Ca2+, and represented a minor component of proteins specifically adsorbed by the column. This activity was resolved on a DEAE-Sephacel column into two fractions, termed PI and PII, on the basis of their order of emergence. After this step, PI and PII were purified 5650- and 3700-fold respectively. The molecular weight of PI was 175 000 and that of PII was 116 000, by polyacrylamide-gradient-gel electrophoresis. Both forms of phosphodiesterase could hydrolyse cyclic AMP and cyclic GMP, although PII displayed a higher affinity toward cyclic GMP than toward cyclic AMP. PI and PII exhibited negative homotropic kinetics in the absence of calmodulin. Upon addition of calmodulin, both enzymes displayed Michaelis-Menten kinetics and a 5-9-fold increase in maximal velocity, at physiological concentrations of cyclic GMP and cyclic AMP. When a pancreatic extract freshly purified by affinity chromatography was immediately analysed by high-performance gel-permeation chromatography on a TSK gel G3000 SW column, PII represented as much as 78% of the eluted activity. This percentage decreased to 52% when the sample was stored at 0 degrees C for 20 h before analysis, suggesting that PII, possibly predominant in vivo, was converted into the heavier PI form upon storage.  相似文献   

16.
Both cyclic AMP-binding and cyclic AMP-dependent protein kinase activities exists in Chinese hamster ovary cell extract. Competition experiments demonstrate that the binding is specific for cyclic AMP. All cellular elements including nucleus, mitochondria, plasma membrane, microsome, ribosome and cytosol contain both activities. Binding activity is highest in the cytosol and lowest in the nucleus. Each fraction contains endogenous protein kinase activity which is insensitive to cyclic AMP activation. When histone was used as a substrate, protein kinase activity in all fractions was stimulated by cyclic AMP (with the highest in cytosol and lowest in the nucleus) and inhibited by Walsh's protein kinase inhibitor.  相似文献   

17.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site.The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP.Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 44 · 10?8 M belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2–5 · 10?6 M) was demonstrated by the inhibitory effect of 10?5 M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

18.
Pigeon heart microsomes contain three minor size protein kinase substrates of minimal molecular weights of 22 000, 15 000, and 11 500, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the microsomes were partially loaded with calcium oxalate and subjected to rate zonal and isopynic centrifugations in sucrose density gradient columns, the 22 000 and the 15 000 dalton proteins settled in the heaviest fraction, which was composed mainly of vesicles of sarcoplasmic reticular membranes; the 11 500 dalton protein was concentrated in the lightest fractions, which consisted chiefly of vesicles of sarcolemmal origin. During incubation of the membrane fractions with Mg[γ-32P]ATP significant amounts of 32P were incorporated into all these proteins. Incorporation of 32P into the 15 000 dalton protein was moderately and 32P incorporation into the 22 000 dalton protein was markedly enhanced in the presence of exogenous soluble cyclic AMP-dependent protein kinase and cyclic AMP. The phosphorylation of the three proteins was virtually unaffected by CA2+ concentrations up to 0.1 mM and by ethyleneglycol-bis(β-aminoethylether)-N,N′-tetraacetic acid in the absence of added Ca2+.Phosphorylation of the 22 000 and the 11 500 dalton proteins occurred mainly at serine residues. In the 15 000 dalton protein threonine residues were the main site of endogenous phosphorylation. Nearly equal amounts of [32P]-phosphate were incorporated into threonine and serine residues of this protein when phosphorylation was supported by exogenous cyclic AMP-dependent protein kinase and cyclic AMP.The 15 000 dalton protein could be removed from its membrane attachment by extraction with an acidic chloroform/methanol mixture. This step opens the way for the purification of this membrane-bound protein kinase substrate.  相似文献   

19.
Approximatively 2–8% of the cyclic nucleotide phosphodiesterase activity of a crude 1000 g supernatant from rat heart was associated with the washed 105,000 g pellet fraction. This activity exhibited biphasic Lineweaver-Burk plots over a large range of cyclic nucleotides concentrations. Concave-Bownward plots were obtained with cyclic AMP as the assay substrate, while cyclic GMP gave rise to concave-upward plots. Treatment of this particulate fraction by freezing and thawing and then with 2% Lubrol PX released the major part of phosphodiesterase activity into the supernatant (70 and 90% for cyclic AMP and cyclic GMP phosphodiesterase activities respectively). Isoelectric focusing of the solubilized enzyme revealed a single peak of phosphodiesterase activity. While the Lineweaver-Burk plots of cyclic AMP phosphodiesterase activity were not markedly modified by detergent treatment kinetic plots of cyclic GMP phosphodiesterase activity underwent a drastic transformation during the overall solubilization procedure. The substantial increase in the cyclic GMP rate of hydrolysis observed at low substrate level might explain the difference in the apparent yield of solubilization between cyclic AMP and cyclic GMP phosphodiesterase activities.  相似文献   

20.
Human blood platelet contained at least three kinetically distinct forms of 3': 5'-cyclic nucleotide phosphodiesterase (3': 5'-cyclic-AMP 5'-nucleotidohydrolase, EC 3.1.4.17) (F I, F II, and F III) which were clearly separated by DEAE-cellulose column chromatography. Although a few properties of the platelet phosphodiesterases such as their substrate affinities and DEAE-cellulose profile resembled somewhat those of the three 3': 5'-cyclic nucleotide phosphodiesterase in rat liver reported by Russell et al. [10], there were pronounced differences in some properties between the platelet and the liver enzymes: (1) the platelet enzymes hydrolyzed both cyclic nucleotides and lacked a highly specific cyclic guanosine 3': 5'-monophosphate (cyclic GMP) phosphodiesterase and (2) kinetic data of the platelet enzymes indicated that cyclic adenosine 3': 5'-monophosphate (cyclic AMP) and cyclic GMP interact with a single catalytic site on the enzyme. F I was a cyclic nucleotide phosphodiesterase with a high Km for cyclic AMP and a negatively cooperative low Km for cyclic GMP. F II hydrolyzed cyclic AMP and cyclic GMP about equally with a high Km for both substrates. F III was low Km phosphodiesterase which hydrolyzed cyclic AMP faster than cyclic GMP. Each cyclic nucleotide acted as a competitive inhibitor of the hydrolysis of the other nucleotide by these three fractions with Ki values similar to the Km values for each nucleotide suggesting that the hydrolysis of both cyclic AMP and cyclic GMP was catalyzed by a single catalytic site on the enzyme. However, cyclic GMP at low concentration (below 10 muM) was an activator of cyclic AMP hydrolysis by F I. Papaverine and EG 626 acted as competitive inhibitors of each fraction with virtually the same Ki value in both assays using either cyclic AMP or cyclic GMP as the substrate. The ratio of cyclic AMP hydrolysis to cyclic GMP hydrolysis by each fraction did not vary significantly after freezing/thawing or heat treatment. These facts also suggest that both nucleotides were hydrolyzed by the same catalytic site on the enzyme. The differences in apparent Ki values for inhibitors such as cyclic nucleotides, papaverine and EG 626 would indicate that three enzymes were different from each other. Centrifugation in a continuous sucrose gradient revealed sedimentation coefficients F I and II had 8.9 S and F III 4.6 S. The molecular weight of these forms, determined by gel filtration on a Sepharose 6B column, were approx. 240 000 (F I and II) and 180 000 (F III). F III was purified extensively (70-fold) from homogenate, with a recovery of approximately 7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号