首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment.  相似文献   

2.
It has been demonstrated that the medicinal mushroom Phellinus linteus (PL), which consists mainly of polysaccharides, possesses antitumor and immunomodulatory properties in vivo and in vitro. The mechanism, however, by which PL inhibits growth and invasive behavior of HepG2 cells remains poorly understood. Here we demonstrated that PL inhibited proliferation and colony formation of HepG2 and that the growth inhibition of HepG2 cells was mediated by S-phase cell cycle arrest. PL also markedly inhibited cancer cell adhesion and invasion of the extracellular matrix. Additionally, we demonstrated that PL-induced apoptosis was associated with a reduction in B-cell lymphoma 2 levels and an increase in the release of cytochrome c. These results suggest that PL exerts a direct antitumor effect by initiating apoptosis and cell cycle blockade in HepG2 cells.  相似文献   

3.
Insulin-like growth factors (IGF), IGF receptors and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. The liver is the major source of IGF-1 and at least two IGFBPs (IGFBP-1 and IGFBP-3). IGFBPs most often serve to attenuate the effects of IGF at the receptor level and thereby limit IGF-induced cell growth and differentiation. Although changes in IGFBP expression have been described during controlled liver growth such as hepatic regeneration following partial hepatectomy, there is limited knowledge of IGFBPs gene expression in uncontrolled growth or hepatocellular carcinoma. In the present study, we employed Northern blotting techniques to document the expression of IGFBP-1, 3 and 4 in normal human livers, cirrhotic and hepatocellular carcinoma tissues. The results revealed no differences in IGFBP-1, 3 and 4 mRNA levels between normal and cirrhotic tissues. However, the expression of all three IGFBPs mRNA were significantly down regulated in hepatocellular carcinoma tissues. These findings are in keeping with IGFBPs playing an important inhibitory role in the development and/or growth of hepatocellular carcinoma in humans.  相似文献   

4.
The growth and metastasis of solid tumors depends on angiogenesis. Anti-angiogenesis therapy may represent a promising therapeutic option. Vasostatin, the N-terminal domain of calreticulin, is a very potent endogenous inhibitor of angiogenesis and tumor growth. In this study, we attempted to investigate whether plasmid-encoding vasostatin complexed with cationic liposome could suppress the growth and metastasis of hepatocellular carcinoma in vivo and discover its possible mechanism of action. Apoptosis induction of pSecTag2B-vasostatin plasmid on murine endothelial cells (MS1) was examined by flow cytometric analysis in vitro. Nude mice bearing HCCLM3 tumor received pSecTag2B-vasostatin, pSecTag2B-Null, and 0.9 % NaCl solution, respectively. Tumor net weight was measured and survival time was observed. Microvessel density within tumor tissues was determined by CD31 immunohistochemistry. H&E staining of lungs and TUNEL assay of primary tumor tissues were also conducted. The results displayed that pSecTag2B-vasostatin could inhibit the growth and metastasis of hepatocellular carcinoma xenografts and prolong survival time compared with the controls in vivo. Moreover, histologic analysis revealed that pSecTag2B-vasostatin treatment increased apoptosis and inhibited angiogenesis. The present data may be of importance to the further exploration of this new anti-angiogenesis approach in the treatment of hepatocellular cancer.  相似文献   

5.
The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidney, adrenal gland, and intestine. It plays an important role in regulating the progression of several cancers including hepatocellular carcinoma (HCC). So it is necessary to study the regulation of FXR. In this study, we found that the expression of miR-421 was inversely correlated with FXR protein level in HCC cell lines. Treatment with miR-421 mimic repressed FXR translation. The reporter assay revealed that miR-421 targeted 3' untranslated region of human FXR mRNA. Furthermore, downregulation of FXR by miR-421 promoted the proliferation, migration, and invasion of HCC cells. These results suggest that miR-421 may serve as a novel molecular target for manipulating FXR expression in hepatocyte and for the treatment of HCC.  相似文献   

6.
7.
Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF induces new vessel formation and tumor growth by inducing mitogenesis and chemotaxis of normal endothelial cells and increasing vascular permeability. However, little is known about VEGF function in the proliferation, survival or migration of hepatocellular carcinoma cells (HCC). In the present study, we have found that VEGF receptors are expressed in HCC line BEL7402 and human HCC specimens. Importantly, VEGF receptor expression correlates with the development of the carcinoma. By using a comprehensive approaches including TUNEL assay, transwell and wound healing assays, migration and invasion assays, adhesion assay, western blot and quantitative RT-PCR, we have shown that knockdown of VEGF165 expression by shRNA inhibits the proliferation, migration, survival and adhesion ability of BEL7402. Knockdown of VEGF165 decreased the expression of NF-κB p65 and PKCα while increased the expression of p53 signaling molecules, suggesting that VEGF functions in HCC proliferation and migration are mediated by P65, PKCα and/or p53.  相似文献   

8.
CITRON (rho-interacting, serine/threonine kinase 21), which is a key component of the midbody, is essential for cytokinesis. However, the role of CITRON in hepatocellular carcinoma (HCC) is poorly understood. Here we first measured the expression of CITRON in HCC specimens by quantitative real-time RT–PCR and immunohistochemical staining. The results showed CITRON to be frequently up-regulated in HCC as compared with adjacent non-tumour tissues. Then we employed adenovirus-mediated RNA interference against CITRON to assess its anti-proliferation effect on SMMC-7721 cells, a representative HCC cell line. The resulting data demonstrated that CITRON knockdown was capable of inhibiting the proliferation and colony formation of SMMC-7721 cells, with an obvious increase of multinucleated cells. Furthermore, we subcutaneously injected the SMMC-7721 cells with the CITRON knockdown into nude mice to evaluate the tumourigenicity. The data indicated that adenovirus-mediated RNA interference can suppress tumourigenicity in vivo of HCC cells. Our data suggest that CITRON may be a potential target for therapeutic intervention in HCC.  相似文献   

9.
10.
We described herein a human hepatocellular carcinoma (HCC) cell-targeted protein cage for which the HCC-binding peptide termed SP94 was modified at the surface of a naturally occurred heat shock protein (Hsp) cage. Six types of HCC-targeted Hsp cages were chemically synthesized using two types of heterobifunctional linker (SM(PEG)(n)) with different lengths and two types of SP94 peptide, which contained a unique Cys residue at the N- or C-terminus of the peptide. These Hsp cages were characterized using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF MS) analyses, sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses, and dynamic light scattering (DLS) measurement. Fluorescence microscopic observations revealed that all the engineered protein cages bind selectively to HCC cells but not to the other cell lines tested (including normal liver cell). Moreover, the number of SP94 peptides on Hsp cages, conjugation site of SP94 peptide, and linker length between a Hsp cage and a SP94 peptide had important effects upon the binding of engineered Hsp cages to HCC cells. An engineered Hsp cage conjugated to the N-terminus of SP94 peptide via a longer linker molecule and containing high SP94 peptide levels showed greater binding toward HCC cells. Surprisingly, through optimization of these three factors, up to 10-fold greater affinity toward HCC cells was achieved. These results are critically important not only for the development of HCC cell-targeting devices using SP94 peptide, but also to create other cell-targeting materials that utilize other peptide ligands.  相似文献   

11.
12.
13.
Human hepatocellular carcinoma is one of the most frequent malignant tumors. It may occur following exposure to various agents, including viruses and chemical carcinogens; however, the underlying mechanisms of the hepatocarcinogenesis are not known. The present study is the result of our search for genes which may be abundantly expressed in human primary liver carcinoma. One of these genes was found to encode the human hepatocyte growth factor-like protein (HGFLP), also known as macrophage-stimulating protein. HGFLP is structurally homologous to hepatocyte growth factor, a potent growth factor for liver. HGFLP mRNA was also found to be overexpressed in a hepatoblastoma sample and in a sample of subacute fulminant hepatic necrosis. In a study on the effects of cytokines on the expression of HGFLP, we found that IL-6 increased expression of HGFLP mRNA in Hep G2 cells, but IL-1alpha, IL-1beta and TNF-alpha had no effect. An increase in HGFLP could be the result of inflammation and/or tissue injury and its overexpression may prove to be useful as an indicator of hepatoma.  相似文献   

14.
AKAP12/Gravin (A kinase anchor protein 12) belongs to the group of A-kinase scaffold proteins and functions as a tumor suppressor in some human primary cancers. While AKAP12 is found consistently downregulated in hepatocellular carcinoma (HCC), its involvement in hepatocarcinogenesis has not been fully elucidated. We identified targeting sites for miR-103 in the 3′-untranslated region (3′-UTR) of AKAP12 by bioinformatic analysis and confirm their function by a luciferase reporter gene assay. We reveal miR-103 expression to be inversely correlated with AKAP12 in HCC tissue samples and show that overexpressed miR-103 promotes cell proliferation and inhibits apoptosis by downregulating AKAP12 expression in HCC cell lines. On the other hand, repression of miR-103 suppresses proliferation and promotes apoptosis in HCC cells by increasing AKAP12. In xenografted HCC tumors, overexpression of AKAP12 suppresses tumor growth whereas overexpression of miR-103 enhances tumor growth while repressing AKAP12. Since the activation of telomerase is crucial for cells to gain immortality and proliferation ability, we investigated whether AKAP12 expression affected telomerase activity in HCC cells. Both AKAP12 overexpression and protein kinase Cα (PKCα) inhibition prevent nuclear translocation and phosphorylation of TERT and reduce telomerase activity in HCC cells. These findings indicate that miR-103 potentially acts as an oncogene in HCC by inhibiting AKAP12 expression and raise the possibility that miR-103 increases telomerase activity by increasing PKCα activity. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for HCC treatment.  相似文献   

15.
Metabolic reprogramming is a hallmark of many cancer types, including hepatocellular carcinoma (HCC). Identifying the critical players in this process might be crucial for the generation of novel and effective anti-neoplastic therapies. In the present investigation, we determined the importance of carbohydrate responsive element binding protein (ChREBP), a central player in the regulation of lipid and glucose metabolism in the liver, on the development of HCC in in vitro and in vivo models. We found that genetic deletion of ChREBP (that will be referred to as ChREBPKO mice) strongly delays or impairs hepatocarcinogenesis driven by AKT or AKT/c-Met overexpression in mice, respectively. In contrast, HCC development was found to be completely unaffected by ChREBP depletion in mice co-expressing AKT and N-Ras protooncogenes. In mouse and human HCC cell lines, suppression of ChREBP via specific small interfering RNAs (siRNAs) resulted in decreased proliferation and induction of apoptosis. Of note, these cellular events were strongly augmented by concomitant inhibition of the mitogen-activated protein kinase (MAPK) pathway. The present data indicate that ChREBP activity might be required or dispensable for HCC growth, depending on the oncogenes involved. In particular, the activation of Ras/MAPK signaling might represent a possible mechanism of resistance to ChREBP depletion in this tumor type. Additional studies are needed to unravel the molecular mechanisms rendering HCC cells insensitive to ChREBP suppression.  相似文献   

16.
17.
The importance of biogenic silver/silver chloride nanoparticles has become increasing day by day. In the present study, silver/silver chloride nanoparticles (Ag/AgCl‐NPs) were synthesized from Kaempferia rotunda tuberous rhizome extract to evaluate the antiproliferative activity against human glioblastoma stem cells (GSCs) in vitro and Ehrlich ascites carcinoma (EAC) cells in vivo in mice. Synthesis of nanoparticles was confirmed by colour change and UV‐visible spectrum and characterized by TEM, XRD, TGA, AFM and FTIR. K rotunda and recently synthesized Zizyphus mauritiana fruit extract‐mediated Ag/AgCl‐NPs inhibited 77.2% and 71% of GSCs growth at 32 µg/mL concentration with the IC50 values of 6.8 and 10.4 µg/mL, respectively. Cell morphological studies and caspase‐3 immunofluorescence assay revealed that both biogenic nanoparticles induced apoptosis in GSCs. Expression levels of several genes were checked by real‐time PCR after treatment with K rotunda tuberous rhizome‐mediated Ag/AgCl‐NPs. PARP, EGFR, NOTCH2 and STAT3 gene expression were decreased with the increase of NFκB, TLR9, IL1, TNFα, IKK and p21 gene that would be the cause of induction of apoptosis in GSCs. The cell cycle arrest at G2/M phase was confirmed by flow cytometric assay. Both nanoparticles were injected intraperitoneally to rapidly growing EAC cells for 5 consecutive days. Approximately, 32.3% and 55% EAC cells growth were inhibited by K rotunda tuberous rhizome‐mediated Ag/AgCl‐NPs at 6 and 12 mg/kg/day doses, respectively while only 20% cell growth inhibition was monitored at 12 mg/kg/day dose of Z mauritiana ‐mediated Ag/AgCl‐NPs. From the above results, it can be concluded that presently synthesized nanoparticles would be a potent anticancer agent.  相似文献   

18.
Thapsigargin treatment of cultured cells leads to an increase in the intracellular calcium concentration, activation of calpain, and, in some cell types, apoptosis. Using a human prostate epithelial cell line that undergoes apoptosis in the presence of thapsigargin, we find decreased levels of IRS-1 protein levels during apoptosis. Inhibition of calpain prevents this decrease in IRS-1 protein; however, inhibitors of caspases or the proteasome are ineffective in maintaining IRS-1 levels. In terms of IGF-I-related second messenger proteins, the effect of thapsigargin is specific for IRS-1 since the protein levels of IGF-I receptor beta-subunit, Akt, Erk, and Shc are not affected. In addition to preventing the reduction in IRS-1, treatment of cells with calpain inhibitor II prevents apoptosis in response to thapsigargin. Finally, IRS-1 and calpain can be identified in protein complexes isolated using IRS-1-specific antibodies, indicating that calpain can associate with either IRS-1 or one of the proteins present in protein complexes that contain IRS-1. In total, these results suggest that IRS-1 may be targeted for degradation by calpain during apoptosis.  相似文献   

19.
The 26S proteasome is an ATP-dependent eukaryotic protease responsible for degrading many important cell regulators, especially those conjugated with multiple ubiquitins. Bound on both ends of the 20S core protease is a multisubunit regulatory particle that plays a crucial role in substrate selection by an as yet unknown mechanism(s). Here, we show that the RPN12 subunit of the Arabidopsis regulatory particle is involved in cytokinin responses. A T-DNA insertion mutant that affects RPN12a has a decreased rate of leaf formation, reduced root elongation, delayed skotomorphogenesis, and altered growth responses to exogenous cytokinins, suggesting that the mutant has decreased sensitivity to the hormone. The cytokinin-inducible genes CYCD3 and NIA1 are upregulated constitutively in rpn12a-1, indicating that feedback-inhibitory mechanisms also may be altered. rpn12a-1 seedlings also showed changes in auxin-induced growth responses, further illustrating the close interaction between auxin and cytokinin regulation. In yeast, RPN12 is necessary for the G1/S and G2/M transitions of the cell cycle, phases that have been shown to be under cytokinin control in plants. We propose that RPN12a is part of the Arabidopsis 26S proteasome that controls the stability of one or more of the factors involved in cytokinin regulation.  相似文献   

20.
Overexpression of cyclooxygenase 2 (COX-2) is associated with the development of a number of human cancers including hepatocellular carcinoma (HCC). In addition, NS398, a selective COX-2 inhibitor, has been found to inhibit the growth of COX-2 expressing HCC cell lines. However, the mechanism of this effect remains unclear. Here, we report that NS398 inhibits the growth of the Hep 3B human HCC cell line and that inhibition results from the induction of apoptosis with no evidence of cell cycle arrest. We also show that the extent of apoptosis is greatly influenced by culture conditions. The NS398-induced apoptosis in Hep 3B cells is caspase-independent. Our data point to the feasibility of preventing HCC by means of COX-2 inhibitors, and show that the environment influences the cytotoxic effect of NS398 on cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号