首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological control of fungi causing root rot on sugar beet by native Streptomyces isolates (C and S2) was evaluated in this study. The dry weight and colony forming unit (CFU) of S2 and C increased when 300 mM NaCl was added to medium. The in vitro antagonism assays showed that both isolates had inhibitory effect against Rhizoctonia solani AG-2, Fusarium solani and Phytophthora drechsleri. In dual culture, Streptomyces isolate C inhibited mycelial growth of R. solani, F. solani and P. drechsleri 45%, 53% and 26%, respectively. NaCl treatment of medium increased biocontrol activity of soluble and volatile compounds of isolate C and S2. After salt treatment, growth inhibition of R. solani, F. solani and P. drechsleri by isolate C increased up to 59%, 70% and 79%, respectively. To elucidate the mode of antagonism, protease, chitinase, beta glucanase, cellulase, lipase and α-amylase activity and siderophore and salicylic acid (SA) production were evaluated. Both isolates showed protease, chitinase and α-amylase activity. Also, biosynthesis of siderophore was detectable for both isolates. Production of siderophore and activity of protease and α-amylase increased after adding salt for both isolates. In contrast, chitinase activity decreased significantly. Production of SA, beta glucanase and lipase by isolate S2 and biosynthesis of cellulase by isolate C were observed in presence and absence of NaCl. Soil treatment with Streptomyces isolate C inhibited root rot of sugar beet caused by P. drechsleri, R. solani and F. solani. Results of this study showed that these two Streptomyces isolates had potential to be utilized as biocontrol agent against fungal diseases especially in saline soils.  相似文献   

2.
The presence of 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity among the phyllosphere methylobacteria of rice was detected and its role in regulating plant ethylene level was assessed. Eighteen methylobacterial isolates from four different cultivars of rice were isolated and screened for ACCD. The 16S rRNA homology of ACCD positive methylobacterial isolate closely related to the species Methylobacterium radiotolerans. The accD gene sequence homology of the isolate was 98% similar to Rhizobium leguminosarum. Foliar spray of ACCD positive methylobacterial isolates enhanced the root and shoot length of rice and tomato seedlings under gnotobiotic condition and lower the ethylene level (60–80%) in the plant species.  相似文献   

3.
Little is known about the bacterial communities associated with the rose plants inhabiting dry desert ecosystems. The aim of this study was to isolate and characterize endophytic bacteria from different organs of rose plant. Endophytic bacteria were observed in healthy roots, stems, leaves, and flowers of rose plant, with a significantly higher density in roots, followed by stems, leaves, and petals. A total of 38 bacterial endophytes were isolated and are closely related phylogenetically to Acetobacter, Acinetobacter, Methylococcus, Bacillus, Micrococcus, Planococcus by 16S rRNA sequence analysis. Six endophytic bacteria were found to produce IAA, solubilize Ca3(PO4)2 and produce siderophore. The six endophytic bacteria all had the capacity to produce hydrolytic enzyme such as cellulase, xylanase, pectinase, amylase, protease, lipase, and chitinase, but difference existed among these isolates.  相似文献   

4.
In this study, bacteria were isolated from the rhizosphere and inside the roots and nodules of berseem clover plants grown in the field in Iran. Two hundred isolates were obtained from the rhizosphere (120 isolates), interior roots (57 isolates), and nodules (23 isolates) of clover plants grown in rotation with rice plants. Production of chitinase, pectinase, cellulase, siderophore, salicylic acid, hydrogen cyanide, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, solubilization of phosphate, antifungal activity against various rice plant pathogen fungi, N2 fixation, and colonization assay on rice seedlings by these strains was evaluated and compared (endophytic isolates vs. rhizosphere bacteria). The results showed both the number and the ability of plant growth-promoting (PGP) traits were different between endophytic and rhizosphere isolates. A higher percentage of endophytic isolates were positive for production of IAA, ACC deaminase, and siderophore than rhizosphere isolates. Therefore, it is suggested that clover plant may shape its own associated microbial community and act as filters for endophyte communities, and rhizosphere isolates with different (PGP) traits. We also studied the PGP effect of the most promising endophytic and rhizosphere isolates on rice seedlings. A significant relationship among IAA and ACC deaminase production, the size of root colonization, and plant growth (root elongation) in comparison with siderophore production and phosphate solubilization for the isolates was observed. The best bacterial isolates (one endophytic isolate and one rhizosphere isolate), based on their ability to promote rice growth and colonize rice roots, were identified. Based on 16S rDNA sequence analysis, the endophytic isolate CEN7 and the rhizosphere isolate CEN8 were closely related to Pseudomonas putida and Pseudomonas fluorescens, respectively. It seems that PGP trait production (such as IAA, ACC deaminase) may be required for endophytic and rhizosphere competence as compared to other PGP traits in rice seedlings under constant flooded conditions. The study also shows that the presence of diverse rhizobacteria with effective growth-promoting traits associated with clover plants may be used for sustainable crop management under field conditions.  相似文献   

5.
Root-knot nematodes are serious pathogens that severe damage to major crops. They damage plant root system that caused significant yield losses. Moreover, the predisposition of nematode-infected plants is secondary infection from fungal plant pathogen that additional adverse effects on plant growth. Our target is to find the antagonist for control nematode, and secondary infection agents and stimulate plant growth. Twenty-three plant-parasitic nematode infested soils were taken from some provinces in the northern and center of Thailand and actinomycetes and fungi were isolated. Eighty-three isolates belong to actinomycete and 67 isolates were fungi. The predominant actinomycete taxa was Streptomyces (97.6%). The predominant fungal taxa were Penicillium (37.3%) and Fusarium (32.8%). All actinomycete and fungal isolates were subjected for primary screening in vitro for their effects on egg hatching and juvenile mortality of Meloidogyne incognita. Secondary screening was evaluated for antagonist effect on plant pathogenic fungi collected from nematode-infected plant, plant growth hormone (indole-3-acetic acid; IAA) and siderophore production. From primary screening, 7 actinomycete and 10 fungal isolates reduced egg hatching and kill juveniles of M. incognita after 7 days incubation. In secondary screening, 10 nematophagous microbes produced IAA and 9 isolates produced hydroxamate siderophore. Streptomyces sp. CMU-MH021 was selected as a potential biocontrol agent. It reduced egg hatching rate to 33.1% and increased juvenile mortality rate to 82% as contrasted to the control of 79.6 and 3.6%, respectively. This strain had high activity to against tested fungi and high ability on IAA (28.5 μg ml−1) and siderophore (26.0 μg ml−1) production.  相似文献   

6.
Soil salinity and alkalization limit plant growth and agricultural productivity worldwide. The application of salt-tolerant plant growth-promoting rhizobacteria (PGPR) effectively improved plant tolerance to saline-alkali stress. To obtain the beneficial actinomyces resources with salt tolerance, thirteen isolates were isolated from rhizosphere saline and alkaline soil of Phragmites communis. Among these isolates, D2-8 was moderately halophilic to NaCl and showed 120 mmol soda saline-alkali solution tolerance. Moreover, the plant growth-promoting test demonstrated that D2-8 produced siderophore, IAA, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), and organic acids. D2-8 showed 99.4% homology with the type strain Streptomyces paradoxus NBRC 14887T and shared the same branch, and, therefore, it was designated S. paradoxus D2-8. Its genome was sequenced to gain insight into the mechanism of growth-promoting and saline-alkali tolerance of D2-8. IAA and siderophore biosynthesis pathway, genes encoding ACC deaminase, together with six antibiotics biosynthesis gene clusters with antifungal or antibacterial activity, were identified. The compatible solute ectoine biosynthesis gene cluster, production, and uptake of choline and glycine betaine cluster in the D2-8 genome may contribute to the saline-alkali tolerance of the strain. Furthermore, D2-8 significantly promoted the seedling growth even under soda saline-alkali stress, and seed coating with D2-8 isolate increased by 5.88% of the soybean yield in the field. These results imply its significant potential to improve soybean soda saline-alkali tolerance and promote crop health in alkaline soil. Open in a separate window  相似文献   

7.
Plant growth-promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. A total of 216 phosphate-solubilizing bacterial isolates were isolated from different rice rhizospheric soil in Northern Thailand. These isolate were screened in vitro for their plant growth-promoting activities such as solubilization of inorganic phosphate, ammonia (NH3), catalase and cell wall-degrading enzyme activity. It was found that 100% solubilized inorganic phosphate, 77.77% produced NH3 and most of the isolates were positive for catalase. In addition, some strains also produced cell wall-degrading enzymes such as protease (7%), chitinase (1%), cellulase (3%) and β-glucanase (3%), as evidenced by phenotypic biochemical test and quantitative assay using spectrophotometry. The isolates could exhibit more than two or three plant growth-promoting (PGP) traits, which may promote plant growth directly or indirectly or synergistically. Part of this study focused on the effect of NaCl, temperature, and pH on a specific the bacterial isolate Acinetobacter CR 1.8. Strain CR 1.8 was able to grow on up to 25% NaCl, between 25 and 55°C, and at pH 5–9. Maximum solubilization of tricalcium phosphate and aluminium phosphate was obtained at neutral pH, and 37°C. Strain CR 1.8 had protease activity but no cellulase, β-glucanase and cellulase activities.  相似文献   

8.
The production of indole-3-acetic acid (IAA), by rhizobacteria, has been associated with plant growth promotion, especially root initiation and elongation. Isolate TO3 selected from 103 fluorescent pseudomonads, identified as Pseudomonas aeruginosa, showed maximum production of IAA. Isolate TO3 having biocontrol activity against Macrophomina phaseolina also showed production of siderophore and HCN was used to screen the role of bacterial IAA in reducing the level of charcoal rot disease occurrence in chickpea. Four IAA defective stable mutants of isolate TO3 having biocontrol activity against M. phaseolina were developed through 5-bromouracil mutagenesis. Mutant TO52 showed 76.47% reduction in production of IAA. Standard IAA was used in similar concentration as present in cell-free culture supernatant of wild isolate TO3 and its mutant TO52. The in vitro and in vivo study showed that IAA-defective mutant TO52 caused reduced biocontrol and plant growth promotory activity than wild isolate TO3. Standard IAA showed comparable biocontrol activity to the culture supernatant. To some extent better biocontrol and growth promotory activity in supernatant than standard IAA indicates the synergistic role of siderophore and HCN. The study clearly reports the role of bacterial IAA in suppression of charcoal rot disease of chickpea.  相似文献   

9.
Aims: To characterize bacteria associated with Zn/Cd‐accumulating Salix caprea regarding their potential to support heavy metal phytoextraction. Methods and Results: Three different media allowed the isolation of 44 rhizosphere strains and 44 endophytes, resistant to Zn/Cd and mostly affiliated with Proteobacteria, Actinobacteria and Bacteroidetes/Chlorobi. 1‐Aminocyclopropane‐1‐carboxylic acid deaminase (ACCD), indole acetic acid and siderophore production were detected in 41, 23 and 50% of the rhizosphere isolates and in 9, 55 and 2% of the endophytes, respectively. Fifteen rhizosphere bacteria and five endophytes were further tested for the production of metal‐mobilizing metabolites by extracting contaminated soil with filtrates from liquid cultures. Four Actinobacteria mobilized Zn and/or Cd. The other strains immobilized Cd or both metals. An ACCD‐ and siderophore‐producing, Zn/Cd‐immobilizing rhizosphere isolate (Burkholderia sp.) and a Zn/Cd‐mobilizing Actinobacterium endophyte were inoculated onto S. caprea. The rhizosphere isolate reduced metal uptake in roots, whereas the endophyte enhanced metal accumulation in leaves. Plant growth was not promoted. Conclusions: Metal mobilization experiments predicted bacterial effects on S. caprea more reliably than standard tests for plant growth‐promoting activities. Significance and Impact of the Study: Bacteria, particularly Actinobacteria, associated with heavy metal‐accumulating Salix have the potential to increase metal uptake, which can be predicted by mobilization experiments and may be applicable in phytoremediation.  相似文献   

10.
The objective of this study was the isolation and screening of actinomycete isolates for antagonistic potential and plant growth promoting activities. A total of 321 isolates were recovered from different plants, their rhizospheric soils and non-rhizospheric soils of Punjab and Himachal Pradesh regions. Out of these, 62 were endophytic, 156 were rhizospheric and 103 were non-rhizospheric isolates. In primary screening (dual culture assay), 83 isolates antagonised one or more test phytopathogenic fungi. From these active isolates, 20 were found to be antagonistic in well diffusion assay (secondary screening) and most of them demonstrated broad spectrum inhibitory activity against five to six test fungi. Studies on plant growth promoting activities revealed that 12 showed abilities to produce indole acetic acid, 10 produced siderophores and 12 showed ammonia production. Phosphate solubilisation was observed in five isolates and four fixed atmospheric N2. In addition, production of hydrolytic enzymes such as chitinase, amylase, cellulase and protease was demonstrated by five, twenty, eleven and eleven isolates, respectively. The results of this study indicate that these isolates may be used as biocontrol and plant growth promoting agents. Morphological and chemotaxonomic studies revealed that all the active isolates belonged to the genus Streptomyces  相似文献   

11.

Biosurfactants are environment compatible surface-active biomolecules with multifunctional properties which can be utilized in various industries. In this study a biosurfactant producing novel plant growth promoting isolate Pseudomonas guariconensis LE3 from the rhizosphere of Lycopersicon esculentum is presented as biostimulant and biocontrol agent. Biosurfactant extracted from culture was characterized to be mixture of various mono- and di-rhamnolipids with antagonistic activity against Macrophomina phaseolina, causal agent of charcoal rot in diverse crops. Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR) analysis confirmed the rhamnolipid nature of biosurfactant. PCR analysis established the presence of genes involved in synthesis of antibiotics diacetylphloroglucinol, phenazine 1-carboxylic acid and pyocyanin, and lytic enzymes chitinase and endoglucanase suggesting biocontrol potential of the isolate. Plant growth promoting activities shown by LE3 were phosphate solubilization and production of siderophores, indole acetic acid (IAA), ammonia and 1-aminocyclopropane-1-carboxylate deaminase (ACCD). To assemble all the characteristics of LE3 various bioformuations were developed. Amendment of biosurfactant in bioformulation of LE3 cells improved the shelf life. Biosurfactant amended formulation of LE3 cells was most effective in biocontrol of charcoal rot disease of sunflower and growth promotion in field conditions. The root adhered soil mass of plantlets inoculated with LE3 plus biosurfactant was significantly higher over control. Biosurfactant amended formulation of LE3 cells caused maximum yield enhancement (80.80%) and biocontrol activity (75.45%), indicating that addition of biosurfactant improves the plant-bacterial interaction and soil properties leading to better control of disease and overall improvement of plant health and yield.

  相似文献   

12.
A total of 10 endophytic actinomycete strains were successfully isolated from healthy shoots and roots of Aquilaria crassna Pierre ex Lec (eaglewood). Analysis of 16S rDNA sequencing of those isolates showed that they belong to members of the genera Streptomyces (2 isolates), Nonomuraea (1 isolate), Actinomadura (1 isolate), Pseudonocardia (1 isolate) and Nocardia (3 isolates). The remaining 2 isolates were unidentified. All of isolates produced the amount of indole-3-acetic acid (IAA) and ammonia ranging between 9.85 ± 0.31 to 15.14 ± 0.22 μg ml?1 and 2 to 60 mg ml?1, respectively. Among 10 isolates tested, the amount of hydroxamate-type siderophore produced by 2 isolates was undetectable. While the remaining 8 isolates produced the amount of hydroxamate-type ranging between 3.21 ± 0.12 and 39.30 ± 0.40 μg ml?1. Also, catechols-type siderophore produced by 9 isolates was undetectable. Actinomadura glauciflava is only one isolate that produced catechols-type 4.12 ± 0.90 μg ml?1. In addition, 10 endophytic actinomycetes showed protease activity ranging from undetectable to 8.16 ± 0.15 unit ml?1. Genetic relatedness amongst these isolates was determined base on Random amplified polymorphic DNA (RAPD) and Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC PCR). Both methodologies generated specific patterns corresponding to particular genotypes. RAPD fingerprinting proved to be slightly more discriminatory than ERIC PCR. This study is the first published report that actinomycetes can be isolated as endophytes within this plant. It is also the first published report that endophytic actinomycetes are capable of producing IAA and siderophores.  相似文献   

13.
Plant growth promoting rhizobacteria (PGPR) are an attractive eco-friendly alternative to chemicals in agriculture. While the rhizospheres of crop plants have been well studied with the objective of screening PGPR, weeds, which play an important role in maintaining ecological balance, have largely been ignored. The rhizosphere of a luxuriantly growing, medicinal weed, Cassia occidentalis was analysed by enumerating PGPR on N free media from the most diverse stage of plant (determined by profiles obtained on denaturing gradient gel electrophoresis). Each isolate was tested for other plant growth promotion assays including production of cellulase, indole acetic acid (IAA), ammonia, HCN, siderophore and chitinase to select for ones possessing multi-trait plant growth promoting (PGP) properties. Selected isolates were used for bacterization of Vigna radiata and Vigna mungo to evaluate their efficacy in promoting plant's growth in seedling germination and axenic pot conditions. Thirty five isolates were analysed further for the array of PGP properties they exhibit. A total of 6 isolates were shortlisted on the basis of maximum traits positive, amount of phosphate solubilized and IAA produced. V. radiata responded well to seed bacterization during seedling germination. A maximum increase of approximately 36 and 60?% was observed for shoot and root length, respectively in V. radiata in axenic pot culture over control plants. Extensive branching of roots was also observed with isolate NL, which produced the maximum amount of IAA. Present study investigated the plant growth promoting isolates obtained on N free media in the rhizosphere of C. occidentalis, which have the potential to be used as inoculants for other crops. This provides a new dimension to the significance of weeds in agricultural ecosystems. The study opens up possibilities for utilization of this property of weeds in plant growth promotion, and subsequent enhancement of yield for agricultural crops.  相似文献   

14.
Two isolates of the mycoparasite Verticillium psalliotae grew rapidly in liquid cultures on autoclaved uredospores of the soybean rust fungus (Phakopsora pachyrhizi Syd.) as sole carbon source and secreted β-l,3-glucanase, chitinase, and protease activities into the medium. One isolate of Verticillium lecanii grew slowly, failed to produce measurable chitinase activity and secreted lower specific activities of β-l,3-glucanase and protease, compared with V. psalliotae. The tested isolates of V. psalliotae and V. lecanii produced comparable levels of lipolytic activity. Amylolytic activity was secreted by V. lecanii but not by V. psalliotae. The isolates of V. psalliotae and V. lecanii used in our experiments differed clearly in protein and protease pattern, determined by electrophoresis on polyacrylamide gels. The results indicate that the rapid growth of V. psalliotae on autoclaved uredospores in liquid culture and on uredosori is probably based primarily on nutrients made available to the mycoparasite by activities of β-1,3-glucanases, chitinases and proteases.  相似文献   

15.
In vitro antagonistic effects of rhizobacteria associated with Coffea arabica L. against some fungal coffee pathogens were studied. The aims were to screen indigenous coffee‐associated isolates for their inherent antagonistic potential against major coffee wilt diseases induced by Fusarium spp. Antagonistic effects, siderophore, HCN and lytic enzyme production were determined on standard solid media. Chemical methods were employed to categorize the major types of siderophores. From a total of 212 rhizobacterial isolates tested, over 10 % (all Pseudomonas and Bacillus spp.) exhibited remarkable inhibition against Fusarium spp. One isolate AUPB24 (P. chlororaphis) showed maximum inhibition of mycelial growth against all fungal pathogens tested, whereas other isolates were mostly inhibitory to F. stilboides and F. oxysporum. The isolate AUBB20 (B. subtilis) was most antagonistic to F. xylarioides. Of the rhizobacterial isolates tested, 67 % produced siderophores and 35 % produced HCN. Many strains (all Pseudomonas spp.) produced siderophores of the hydroxamate type and only a small proportion produced those of the catecholate type. Few antagonists showed chitinase activity. The production of siderophores and HCN by Pseudomonas spp., lipase and protease by all antagonists and β‐1,3‐glucanase by several Bacillus spp. could be considered the major mechanisms involved in the inhibition of fungal growth. The in vitro results provide the first evidence of an antagonistic effect of coffee‐associated rhizobacteria against the emerging fungal coffee pathogens F. stilboides and F. xylarioides and indicate the potential of both bacterial groups for biological control of coffee wilt diseases.  相似文献   

16.
The screening of 27 isolates grown on nitrogen-free medium for nitrogen-fixing ability resulted in the isolation of five organisms belonging toBacillaceae, Enterobacteriaceae andPseudomonadaceae. Estimates of N2-fixation efficiencies of these isolates indicated that they may be responsible for low rates of N2-fixation in soil. The possible association of these isolates as well as ofAzotobacter andAzospirillum with wheat and barley was investigated in a greenhouse experiment. The highest values of nitrogenase activity on plant root were recorded in treatments inoculated with composite inocula of the isolated N2-fixers, particularly whenAzotobacter and/orAzospirillum were added in combination. Inoculation with single inoculum of each of the N2-fixing isolates had no significant influence on plant growth, except withPseudomonas andBacillus for wheat and barley, respectively. Highly significant increases in growth of both plants were recorded in all cases of multistrain inoculation.  相似文献   

17.
Streptomyces is a genus with known biocontrol activity, producing a broad range of biologically active substances. Our goal was to isolate local Streptomyces species, evaluate their capacity to biocontrol the selected phytopathogens, and promote the plant growth via siderophore and indole acetic acid (IAA) production and phosphate solubilization. Eleven isolates were obtained from local soil samples in Saudi Arabia via the standard serial dilution method and identified morphologically by scanning electron microscope (SEM) and 16S rRNA amplicon sequencing. The biocontrol of phytopathogens was screened against known soil-borne fungi and bacteria. Plant growth promotion capacity was evaluated based on siderophore and IAA production and phosphate solubilization capacity. From eleven isolates obtained, one showed 99.77% homology with the type strain Streptomyces tricolor AS 4.1867, and was designated S. tricolor strain HM10. It showed aerial hyphae in SEM, growth inhibition of ten known phytopathogens in in vitro experiments, and the production of plant growth promoting compounds such as siderophores, IAA, and phosphate solubilization capacity. S. tricolor strain HM10 exhibited high antagonism against the fungi tested (i.e., Colletotrichum gloeosporides with an inhibition zone exceeding 18 mm), whereas the lowest antagonistic effect was against Alternaria solani (an inhibition zone equal to 8 mm). Furthermore, the most efficient siderophore production was recorded to strain HM8, followed by strain HM10 with 64 and 22.56 h/c (halo zone area/colony area), respectively. Concerning IAA production, Streptomyces strain HM10 was the most effective producer with a value of 273.02 μg/ml. An autochthonous strain S. tricolor HM10 should be an important biological agent to control phytopathogens and promote plant growth.  相似文献   

18.
Seven culturable bacterial isolates, obtained from the internal stem tissues of Solanum elaeagnifolium and successfully colonizing the internal stem tissues of tomato cv. Rio Grande, were screened for their in vivo antifungal activity against Fusarium oxysporum f.sp. lycopersici (FOL) and their growth‐promoting potential on tomato plants. SV101 and SV104 isolates, assessed on pathogen‐challenged tomato plants led to a significant decrease (77–83%) in Fusarium wilt severity and vascular browning extent (76%), as compared to the inoculated and untreated control. Isolates enhanced growth parameters on pathogen‐challenged and unchallenged tomato plants. SV104 and SV101 isolates were most effective in suppressing disease and enhancing plant growth. These two isolates were identified as Bacillus sp. str. SV101 ( KU043040 ) and B. tequilensis str. SV104 ( KU976970 ). They displayed antifungal activity against FOL; pathogen growth was inhibited by 64% and an inhibition zone (11.50 and 19.75 mm) against FOL could be formed using whole cell suspensions. SV101 and SV104 extracellular metabolites also inhibited FOL growth by 20 and 55%, respectively, as compared to control. B. tequilensis str. SV104 was shown to produce protease, chitinase, pectinase, IAA and siderophores. Bacillus sp. str. SV101 displayed pectinase activity and was found to be an IAA‐producing and phosphate‐solubilizing agent. To our knowledge, this is the first study reporting on S. elaeagnifolium use as a potential source of potent biocontrol and plant growth‐promoting agents.  相似文献   

19.
The isolate RNP4 obtained from a long-term tannery waste contaminated soil was characterized and presumptively identified as Pseudomonas sp. The strain RNP4 tolerated concentrations up to 450 mg Cr6+/L on a Luria-Bartani (LB) agar medium and reduced a substantial amount of Cr6+ to Cr3+ in the LB liquid medium. The ability of performing multifarious activities in tandem suggested the uniqueness of isolate RNP4. The strain produced a substantial amount of indole acetic acid (IAA) in tryptophan-supplemented medium. The strain also exhibited the production of siderophore and solubilization of phosphorus in mineral salt medium and SRS1 medium, respectively. Concurrent production of IAA and siderophore and the solubilization of phosphorus revealed its plant growth promotion potential. Furthermore, the strain was able to promote the growth of black gram, Indian mustard, and pearl millet in the presence of Cr6+. Thus, the innate capability of this novel isolate for parallel bioremediation and plant growth promotion has significance in the management of environmental and agricultural problems.  相似文献   

20.
Indigenous strains isolated from rhizosphere may contain highly competent genotypes to enhance the plant growth and often perform better than the introduced isolates. The present study deals with the characterisation of plant growth-promoting (PGP) attributes and antagonistic activity of Azotobacter chroococcum AZO2 against Macrophomina phaseolina causing charcoal rot disease and their effect on the growth of sesame (Sesamum indicum L.). Eight strains of Azotobacter were isolated from sesame rhizosphere on nitrogen-free medium, which exhibited significant PGP parameters such as phosphate solubilisation, indole acetic acid and siderophore production. The strain A. chroococcum AZO2 (EU274299) was characterised by 16S rDNA gene sequencing. Amplification of 781 bp nif H gene confirms nitrogenase activity of all the strains. A. chroococcum AZO2 exhibited strong antagonistic activities against M. phaseolina causing 81% colony growth inhibition and resulted in hyphal perforations, empty cell (halo) formation, hyphal twisting, shrinking and lysis of fungal mycelia along with degeneration of sclerotia. A. chroococcum AZO2 produced chitinase that caused degradation and digestion of the cell wall component of M. phaseolina. Different vegetative and reproductive parameters of sesame were found to be enhanced significantly upon application of A. chroococcum AZO2 + half doses of chemical fertilisers. A. chroococcum AZO2 was also found to be an effective root coloniser, plant growth promoter and potential antagonistic bacterium. It can be concluded that A. chroococcum AZO2 strain bears the characteristics of technological applications for inoculant preparation and growth enhancement of sesame besides being utilised as a better PGP bacterium as well as an effective agent for biocontrol of M. phaseolina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号