首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the sexual reproduction of the green alga Closterium ehrenbergii, two sexually competent cells that are morphologically indistinguishable from the vegetative cells first come close to each other to form a sexually interacting pair. Each then divides into two gametangial cells. Isogamous conjugation occurs between nonsister gametangial cells of the two resulting pairs. With unusual selfing clones derived from a certain cross of heterothallic strains, we dissected apart a pair of gametangial cells that had already been united together by a delicate transparent tube, into which each gametangial cell was going to develop its conjugation papilla. In spite of such a degree of differentiation, when each was cultured in fresh medium, individual gametangial cells could dedifferentiate into vegetative cells and form subclones. By crossing such subclones with standard stable heterothallic mating-type strains, we show that each selfing clone of this alga actually produces both stable mt + and stable mt - cells, in addition to unstable mt - cells with selfing potency, during its mitotic vegetative growth. Although the selfing in C. ehrenbergii studied here differs in certain points from true homothallism, the results of the present study provide insight into how homothallism might have evolved from heterothallism.  相似文献   

2.
Members of the Closterium peracerosum–strigosum–littorale (C. psl.) complex are unicellular charophycean algae in which there are two modes of zygospore formation, heterothallic and homothallic. A homothallic strain of Closterium (designation, kodama20) was isolated from a Japanese rice paddy field. Based on alignment of the 1506 group‐I introns, which interrupt nuclear SSU rDNAs, homothallic kodama20 is most closely related to the heterothallic mating group II‐B, which is partially sexually isolated from group II‐A. Time‐lapse photography of the conjugation process in kodama20 revealed that most of the observed zygospores originated from one vegetative cell. The sexual conjugation process consisted of five stages: (1) cell division resulting in the formation of two sister gametangial cells from one vegetative cell, (2) formation of a sexual pair between the two sister gametangial cells (or between gametangial cells of another adjoined individual), (3) formation of conjugation papillae, (4) release of gametic protoplasts from both members of a pair, and (5) formation of the zygospore by protoplast fusion. For conjugation to progress, the cell density and light condition in the culture was critical. We suggested the presence of a conjugation promotion factor.  相似文献   

3.
Homozygous mt?/mt? diploid clones of the Closterium ehrenbergii Menegh. ex Ralfs species complex were obtained by hypertonic treatment from minus vegetative cells, and mating type segregation ratios in the F1 progeny of “triploid” zygospores between wild type mt+ haploid and mt?/mt? homozygous diploui were analyzed. The ratio of plus to minus individuals was 1:4.8, and the ratio of the pairs of opposite mating types to those of minus mating type was 1:2.1. The results clearly show that mt? is dominant to mt+ and that the mating type inheritance in these zygospores follows the triploid-like pattern. The validity of our assumption that the two mating types are determined by one genetic factor (mt? allele dominant) was confirmed in B1 progeny analyses as well. The results suggest that this sex determining mechanism is working effectively in the C. ehrenbergii species complex, in which several biological species have evolved through polyploidization.  相似文献   

4.
When mating-type minus (mt) and plus (mt+) cells of theClosterium peracerosum-strigosum-littorale complex were mixed together in a nitrogen-deficient mating medium, cells of both types released protoplasts, this release being the first step in the process of conjugation. Release of protoplasts by mt cells also proceeded without pairing in a medium in which mt and mt+ cells had previously been cultured together. A protein with the ability to induce the release of protoplasts was purified from this medium by sequential column-chromatographic steps, and named PR-IP (protoplast-release-inducing protein). The PR-IP had an apparent molecular mass (Mr) of 95000 on gel filtration and could be separated into several isoforms by anion-exchange chromatography. Each isoform consisted of two glycopolypeptides of Mrs 42000 and 19000, while the deglycosylated polypeptides had Mrs of 34000 and 18000, respectively. From an analysis of dose-response curves, the numbers of PR-IP molecules required for the release of a protoplast by a single cell was calculated as 1.5·109 and the concentration required for 50% of the maximum response (ED50) as 4.1·10−9M. We suggest that the PR-IP is a biologically active glycoprotein which induces the release of gametic protoplasts from mt cells of thisClosterium complex.  相似文献   

5.
Summary Kinetic experiments with synchronously sporulating cultures of a homothallic h90 strain of Schizosaccharomyces pombe showed that trehalase activity abruptly increased in the late sporulation process, coinciding with the appearance of visible spores. Trehalase activity was absent in vegetative cells. A set of strains different in genetic constitution at the mating type loci was tested for induction of trehalase on nitrogen-free sporulation medium. The appearance of trehalase activity on the sporulation medium was observed only in sporulating cultures; cultures of homothallic strains (h90) and diploid strains heterozygous for mating type (h+/h), and mixed cultures of heterothallic h+ and h strains. Trehalase activity was not induced in nonsporogenic strains: heterothallic haploid strains (h+ and h), diploid strains homozygous for mating type (h+/h+ and h/h) and the homothallic strain harboring the mutation in the mat2 gene, which was unable to undergo the first meiotic division. Trehalose accumulation on the sporulation medium was observed solely in the sporulating cultures. These results led us to conclude that the induction of trehalase activity as well as the accumulation of trehalose in the medium lacking nitrogen sources was a sporulation-specific event under the control of the mating type genes.  相似文献   

6.
Sexual cell division (SCD) that produces two gametangial cells from one vegetative mother cell is the first step observed morphologically in the sexual reproduction in the Closterium peracerosum–strigosum– littorale complex. SCD‐inducing activities specific for each mating‐type cells were detected in the medium in which both mating type cells has been cocultured. Mating‐type minus (mt ? ) cells released SCD‐inducing substance specific for mating‐type plus (mt + ) cells and were designated as SCD‐ inducing pheromone (IP)‐minus, whereas mt ? specific substances released from mt + cells were designated as SCD‐IP‐plus. Culture medium was subjected to gel filtration, and then SCD‐IP‐plus and SCD‐IP‐minus chemical were found to have the molecular masses of 90–100 kDa and 10–20 kDa, respectively. It was evident that light was imperative for this type of signaling. Gametangial cells of both mating types were obtained from vegetative cells by treatment with SCD‐IPs. Gametangial mt + cells showed high competency for conjugation with vegetative mt ? cells, whereas gametangial mt ? cells showed low competency for conjugation with vegetative mt + cells. These results indicate that SCD in both mating type cells is induced by high molecular weight sex pheromones and that the roles of gametangial cells in the process of conjugation differ by sex.  相似文献   

7.
Closterium ehrenbergii is a unicellular charophycean alga consisting of two sexes: mating type plus (mt+) and minus (mt). The sexual reproductive process consists of five steps: formation of sexual pairs, cell division of each member of a pair, formation of conjugation papillae, release of protoplasts from gametangial cells, and fusion of protoplasts to form a zygote. The second step, called sexual cell division (SCD), produces two gametangial cells from one vegetative mother cell. The SCD of mt+ cell is mediated by a diffusible sex pheromone, named SCD-inducing pheromone (SCD-IP). This pheromone is released from mt cells in the light, and the presence of mt+ cells stimulates its secretion from mt cells. SCD-IP was purified by sequential column-chromatographic fractionation from culture medium in which both mating type cells had been co-cultured. Purified SCD-IP is a glycoprotein with an apparent molecular mass of 20 kDa. The molecular mass of the SCD-IP was estimated to be 18 kDa by mass spectrometry. Amino-terminal and two internal amino acid sequences of the pheromone revealed significant similarity to another Closterium pheromone, protoplast release-inducing protein (PR-IP) inducer of Closterium peracerosum-strigosum-littorale complex (C. pslc). These two pheromones induced different morphological reactions in each Closterium species. Based on these results, the diversity of sex pheromones is discussed.  相似文献   

8.
The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt+) and mating type minus (mt?), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt+ and mt? mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.  相似文献   

9.
The mating activity of mating-type plus gametes of Chlamydomonas eugametos depends on light. Cells lost their ability to agglutinate with mating-type minus gametes after a dark period of 30 min. They regained their agglutinability after 10 min exposure to light. Other mating reactions, such as tipping and flagellar tip activation, were not dependent upon light. Since cycloheximide and tunicamycin did not affect the light-induced activation of flagellar agglutinability, no protein synthesis or glycosylation is involved in this process. Equal amounts of biologically active agglutination factor could be extracted from cells placed either in light or in darkness. A minor portion of the active material was found to be located on the flagellar surface of illuminated cells. No active material was found on the flagellar surface of dark-exposed cells, whereas their cell bodies contained the same amount of active material as the cell bodies of illuminated cells. Since a light-induced flow of agglutination factors from the cell body to the flagella could not be detected and dark-exposed cells could be slightly activated by amputation or fixation by glutaraldehyde, we propose that light affects flagellar agglutinability by an in-situ modification of the agglutination factor on the flagella. When mt + and mt - strains were crossed and the progeny examined for light-sensitivity, it was apparent that this phenomenon is not mating type-linked.Abbreviations and symbols FTA flagellar tip activation - mt +/- mating type plus or minus - WGA wheat-germ agglutinin  相似文献   

10.
Cellular slime mould Dictyostelium discoideum propagates as single haploid cells and under certain environmental conditions enters into a sexual cycle called macrocyst formation. There are homothallic and heterothallic strains reported, the former being able to form macrocysts in clonal cell populations while the latter to do so only in the presence of opposite mating-type strains. Molecular basis for differential mating systems is an intersting subject totally unknown yet. In the present study, sexual cell interactions in AC4, a homothallic strain of D. discoideum, was studied in comparison with the heterothallic mating system. The conditoned medium of AC4 cells was found to promote the sexual cell fusion among themselves. In addition, it also enhanced the cell fusion between heterothallic strains. Furthermore, the conditioned medium obtained from the mated culture of heterothallic strains reported to induce the sexual cell fusion in the heterothallic strains (Saga and Yanagisawa, 1983) was found also to promote the cell fusion in AC4. These results suggest that common regulatory mechanisms operate for sexual cell fusion among different mating systems in D. discoideum.  相似文献   

11.
Vanwinkle-Swift KP  Hahn JH 《Genetics》1986,113(3):601-619
The non-Mendelian erythromycin resistance mutation ery-u1 shows bidirectional uniparental inheritance in crosses between homothallic ery-u1 and ery-u1+ strains of Chlamydomonas monoica . This inheritance pattern supports a general model for homothallism invoking intrastrain differentiation into opposite compatible mating types and, further, suggests that non-Mendelian inheritance is under mating-type (mt) control in C. monoica as in heterothallic species. However, the identification of genes expressed or required by one gametic cell type, but not the other, is essential to verify the existence of a regulatory mating-type locus in C. monoica and to understand its role in cell differentiation and sexual development. By screening for a shift from bidirectional to unidirectional transmission of the non-Mendelian ery-u1 marker, a mutant with an apparent mating-type-limited sexual cycle defect was obtained. The responsible mutation, mtl-1, causes a 1000-fold reduction in zygospore germination in populations homozygous for the mutant allele and, approximately, a 50% reduction in germination for heterozygous (mtl-1/mtl-1 +) zygospores. By next screening for strains unable to yield any viable zygospores in a cross to mtl-1, a second putative mating-type-limited mutant, mtl-2, was obtained. The mtl-2 strain, although self-sterile, mates efficiently with mtl-2+ strains and shows a unidirectional uniparental pattern of inheritance for the ery-u1 cytoplasmic marker, similar to that observed for crosses involving mtl-1. Genetic analysis indicates that mtl-1 and mtl-2 define unique unlinked Mendelian loci and that the sexual cycle defects of reduced germination (mtl-1) or self-sterility (mtl-2) cosegregate with the effect on ery-u1 cytoplasmic gene transmission. By analogy to C. reinhardtii, the mtl-1 and mtl-2 phenotypes can be explained if the expression of these gene loci is limited to the mt+ gametic cell type, or if the wild-type alleles at these loci are required for the normal formation and/or functioning of mt + gametes only.  相似文献   

12.
The process of sexual differentiation was studied using heterothallic clones of Closterium ehrenbergii Meneghini. The first visible sign of sexual reproduction was agglutination of two or more cells in a group and this was followed by gametangiogenic division and conjugation of gametangial cells. Movements of gametangial cells were carefully studied. Gametangial cells occasionally participated again in gametangiogenesis instead of proceeding directly to the formation of conjugation papilla. The whole process of sexual differentiation from vegetative cell to zygospore was considered to be basically similar in both of the two closely related mating groups, A and B, of C. ehrenbergii. Nevertheless, there were some differences between the two groups in patterns of the sexual differentiation. In Group A, vegetative cell division was completely suppressed by mixing the two complementary mating type clones together into the same medium with high light illumination. This suppression was not caused by the nitrogen depletion in the medium, but by the presence of cells of opposite mating type. In Group B, vegetative cell division and sexual reproduction occurred side by side repeatedly for several days.  相似文献   

13.
Reproductive isolation is essential for the process of speciation. In order to understand speciation, it is necessary to compare one mating group with other phylogenetically related but reproductively isolated groups. The Closterium peracerosum–strigosum–littorale (C. psl.) complex is a unicellular isogamous zygnematophycean alga, which is believed to share a close phylogenetic relationship with the land plants. In this study, we identified a new mating group, named group G, of C. psl. complex and compared its physiological and biochemical characteristics with the mating group I-E, which was closely related to the mating group G. Zygospores are typically formed as a result of conjugation between mating-type plus (mt+) and mating-type minus (mt?) cells in the same mating group during sexual reproduction. Crossing experiments revealed mating groups G and I-E were reproductively isolated from each other, but the release of lone protoplasts from mt? cells of mating group G was induced in the presence of mt+ cells of mating group I-E. In fact, the sex pheromone, protoplast-release-inducing protein of mating group I-E induced the release of protoplasts from mt? cells of mating group G. When mt+ and mt? cells of both mating groups I-E and G were co-cultured (multiple-choice matings), the zygospore formation of mating group G, but not that of mating group I-E, was inhibited. Based on these results, we propose a possible mechanism of reproductive isolation between the two mating groups and suggest the presence of sexual interference between mating group G and mating group I-E.  相似文献   

14.
Physiological aspects of conjugation in fission yeast   总被引:1,自引:0,他引:1  
R. Egel 《Planta》1971,98(1):89-96
Summary Conjugation was studied in Schizosaccharomyces pombe using liquid media. Nitrogen, which was growth-limiting in a synthetic medium, had to be consumed completely before conjugation could start. Conjugation was preceded by sexual agglutination. Agglutinability was not constitutive in heterothallic strains. It only developed when cells of h + and h - mating type were grown in mixed culture for at least 2.5 hr before the start of conjugation.  相似文献   

15.
Sears BB  Boynton JE  Gillham NW 《Genetics》1980,96(1):95-114
In Chlamydomonas reinhardtii, gamete differentiation is induced by nitrogen deprivation. While cellular nitrogen content and amount of chloroplast DNA in cells of both mating types are reduced during gametogenesis, the spontaneous transmission of paternal (mt-) chloroplast alleles in crosses is specifically affected by the stringency of the nitrogen starvation regime used for pregrowth and gametogenesis of the mt- parent. In all cases, reciprocal crosses yielded biparental zygospores whose clones contain predominantly cells expressing only the chloroplast alleles from the maternal (mt+) parent. No differences attributable to strain divergence were seen in chloroplast gene inheritance pattern, DNA content, or the relative frequency of transmission of paternal chloroplast alleles to progeny of biparental zygospores.  相似文献   

16.
Detailed conjugation processes in Penium, a unicellular conjugating green alga, are described for the first time. A homothallic strain of Penium margaritaceum (Ehrenb.) Bréb. (Designation, izu84‐10) was isolated from a rice paddy field in Japan. The species was identified based on its morphology, and a molecular phylogeny confirmed that izu84‐10 was closely related to another identified strain of this species. Using time‐lapse photography, the conjugation processes in P. margaritaceum were observed and then categorized into the following six stages: (1) cell division, resulting in the formation of two sister gametangial cells from one vegetative cell; (2) formation of a sexual pair between the two sister gametangial cells (or between gametangial cells of another nearby individual); (3) formation of conjugation papillae by elongation of the cell wall; (4) release of a gamete from one of the pair members; (5) release of a gamete from the other pair member; and (6) formation of the zygospore by gamete fusion. By alcian blue staining, possible involvement of mucilage to facilitate this cell adhesion and cell–cell communication was suggested.  相似文献   

17.
The Closterium peracerosum–strigosum–littorale (C. psl.) complex consists of unicellular algae and is known to be composed of several reproductively isolated mating groups of heterothallic strains. Group I‐E is completely isolated from mating groups II‐A and II‐B, groups II‐A and II‐B are partially isolated from each other, and only mating‐type plus (mt+) cells of group II‐A and mating‐type minus (mt?) cells of group II‐B form zygotes. Based on the alignment of 1506 group I introns, significant phylogenetic relationships were observed among mating groups II‐A and II‐B, while mating group I‐E was distant from groups II‐A and II‐B. Sexual cell division in both mating‐type cells of group II‐A was stimulated in conditioned media in which cells of group II‐B had been cultured. When mt? cells of group II‐B were stimulated in conditioned medium derived from group II‐A, mt+ cells of group II‐B did not respond to the conditioned medium. Conditioned media derived from group I‐E did not exhibit sexual cell division (SCD)–inducing activity against any strain except those within its own group. From the alignment of deduced amino acid sequences from orthologous protoplast‐release‐inducing protein (PR‐IP) Inducer genes, we detected a significant similarity among groups II‐A and II‐B, and mating group I‐E had low similarity to other mating groups. The existing degree of reproductive isolation can be partially explained by differences in molecular structures and physiological activities of sex pheromones of these heterothallic mating groups.  相似文献   

18.
Chlamydomonas eugametos gametes can sexually agglutinate via their flagellar surfaces whereas vegetative cells cannot. Therefore, flagellar glycoproteins, present in gamete cells but absent from vegetative cells, were investigated as prospective mt -agglutination factors. They were identified as periodic acid Schiff (PAS) stained bands separated in sodium dodecyl sulphate-polyacrylamide electrophoresis gels. Gamete-specific bands were determined by comparison with equivalent gels of vegetative flagella and by immunological techniques using antisera raised against isolated mt - gamete flagella. Four high molecular weight flagellar glycoproteins proved to be gamete specific (PAS-1.2, PAS-1.3, PAS-3 and PAS-4). They were extracted from flagella by 3 M guanidine thiocyanate, separated in a column of Sepharose 2B, and tested for in vitro agglutination activity on mt + gametes. A single peak of activity was found to be correlated with the presence of the PAS-1.2 band. It is shown that mt - agglutination activity is related to the concentration of this glycoprotein in flagellar membranes.Abbreviations SDS sodium dodecyl sulphate - PAS periodic acid Schiff - GTC guanidine thiocyanate - mt -/+ mating type plus or minus  相似文献   

19.
 In sexual reproduction of Closterium ehrenbergii, pairing with the sexual partner cells is the first process observed. A cell migration-inducing activity, specific for mating-type plus (mt+; NIES-228) cells, was detected in the culture medium of mating-type minus (mt; NIES-229) cells. Light was necessary for production of the active substance by mt cells and for migration of mt+ cells. The active substance was heat-labile and had an apparent molecular mass of 20 kDa, as determined by gel filtration. A protein of 20 kDa was detected in the active fraction of gel filtration after sodium dodecyl sulfate polyacrylamide gel electrophoresis. Based on these results, it is proposed that a chemotactic sexual pheromone involved in the formation of sexual pairs of cells is secreted by mt cells of C. ehrenbergii and is proteinaceous, like other sexual pheromones secreted by Closterium species. Received: 31 July 1997 / Revision accepted: 25 November 1997  相似文献   

20.
To find out glycoproteins involved in the mating reaction ofChlamydomonas reinhardtii, the effect of tunicamycin (TM), a potent inhibitor of glycosylation of proteins, was studied. TM, when present during gametogenesis, blocked the acquisition of agglutinability ofmt + cells. TM also inhibited the recovery of agglutinability ofmt + gamete after trypsin treatment. On the contrary, TM blocked neither the acquisition of agglutination during gametogenesis ofmt - cells nor the recovery of their agglutinability after trypsinization. It was found, however, that the TM-treatedmt - gametes can agglutinate but do not fuse with non treatedmt + gametes at all. When gametes of gam-1mt -, a conditional mutant strain for cell fusion, were induced at non permissive temperature of 35°C and then transferred to 25°C, the ability of cell fusion was acquired after about 5 h incubation. Presence of TM completely blocked this acquisition. Based on these evidence, we conclude that at least two TM-sensitive glycoproteins are included in the mating reaction. The first component is located on the flagellar surface ofmt + gamete and responsible for agglutination withmt - flagella. The second component occurs on the surface ofmt - gamete and plays a role in the fusion withmt + gamete.Abbreviations CHI cycloheximide - mt mating type - TM tunicamycin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号