首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purified gastric (H(+)+K+)-transporting ATPase [(H(+)+K+)-ATPase] from the parietal cells always contains a certain amount of basal Mg2(+)-dependent ATPase (Mg2(+)-ATPase) activity. lin-Benzo-ATP (the prefix lin refers to the linear disposition of the pyrimidine, benzene and imidazole rings in the 'stretched-out' version of the adenine nucleus), an ATP analogue with a benzene ring formally inserted between the two rings composing the adenosine moiety, is an interesting substrate not only because of its fluorescent behaviour, but also because of its geometric properties. lin-Benzo-ATP was used in the present study to elucidate the possible role of the basal Mg2(+)-ATPase activity in the gastric (H(+)+K+)-ATPase preparation. With lin-benzo-ATP the enzyme can be phosphorylated such that a conventional phosphoenzyme intermediate is formed. The rate of the phosphorylation reaction, however, is so low that this reaction with subsequent dephosphorylation cannot account for the much higher rate of hydrolysis of lin-benzo-ATP by the enzyme. This apparent kinetic discrepancy indicates that lin-benzo-ATP is not a substrate for the (H(+)+K+)-ATPase reaction cycle. This idea was further supported by the finding that lin-benzo-ATP was unable to catalyse H+ uptake by gastric-mucosa vesicles. The breakdown of lin-benzo-ATP by the (H(+)+K+)-ATPase preparation must be due to a hydrolytic activity which is not involved in the ion-transporting reaction cycle of the (H(+)+K+)-ATPase itself. Comparison of the basal Mg2(+)-ATPase activity (with ATP as substrate) with the hydrolytic activity of (H(+)+K+)-ATPase using lin-benzo-ATP as substrate and the effect of the inhibitors omeprazole and SCH 28080 support the notion that lin-benzo-ATP is not hydrolysed by the (H(+)+K+)-ATPase, but by the basal Mg2(+)-ATPase, and that the activity of the latter enzyme is not involved in the (H(+)+K+)-transporting reaction cycle (according to the Albers-Post formalism) of (H(+)+K+)-ATPase.  相似文献   

2.
(Z)-5-Methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine, AU-1421, interacted at 0 degree C with the K(+)-sensitive phosphoenzymes of three transport ATPases, Ca(2+)-, H+/K(+)- and Na+/K(+)-ATPase. In the case of Ca(2+)-ATPase, AU-1421 at about 80 microM stimulated 6-fold the rate of splitting of the phosphoenzyme, on which K+ simply functions as an accelerator from one side of the membrane. Probably AU-1421 also simply interacts with the K(+)-binding site of the phosphoenzyme that is easily accessible from the aqueous phase. In the cases of H(+)/K(+)- and Na(+)/K(+)-ATPases, AU-1421 stabilized the phosphoenzymes which accept K+ as the translocating ion. The rate constants of dephosphorylation for H(+)/K(+)-ATPase and Na(+)/K(+)-ATPase were decreased to half by AU-1421 at about 5 and 10 microM, respectively. Presumably after binding of AU-1421 to a K(+)-recognition site of the phosphoenzyme, local motion of the peptide region near the binding site that serves to move the bound ion into the ion-transport pathway (occlusion center) might be inhibited. Thus AU-1421 may be able to distinguish two modes of K+ action on the K(+)-sensitive phosphoenzymes.  相似文献   

3.
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.  相似文献   

4.
The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.  相似文献   

5.
The distribution of free thiol groups associated with the membrane proteins of the purified pig gastric microsomal vesicles was quantified, and the relation of thiol groups to the function of the gastric (H+ + K+)-transporting ATPase system was investigated. Two different thiol-specific agents, carboxypyridine disulphide (CPDS) and N-(1-naphthyl)maleimide (NNM) were used for the study. The structure-function relationship of the membrane thiol groups was studied after modification by the probes under various conditions, relating the inhibition of the (H+ + K+)-transporting ATPase to the ATP-dependent H+ accumulation by the gastric microsomal vesicles. On the basis of the extent of stimulation of the microsomal (H+ + K+)-transporting ATPase in the presence and absence of valinomycin (val) about 85% of the vesicles were found to be intact. CPDS at 1 mM completely inhibits the valinomycin-stimulated ATPase and the associated p-nitrophenyl phosphatase with a concomitant inhibition of vesicular H+ uptake. Both the enzyme and dye-uptake activities were fully protected against CPDS inhibition when the treatment with CPDS was carried out in the presence of ATP. ATP also offered protection (about 65%) against NNM inhibition of the (H+ + K+)-transporting ATPase system and vesicular H+ uptake. Under similar conditions ATP also protected about 10 and 6 nmol of thiol groups/mg of protein respectively from CPDS and NNM reaction. Our data suggest that the thiol groups on the outer surface of the vesicles are primarily involved in gastric (H+ + K+)-transporting ATPase function. Furthermore, at least about 15% of the total microsomal thiol groups appear to be associated with the ATPase system. The data have been discussed in terms of the structure-function relationship of gastric microsomes.  相似文献   

6.
Binding of cholesterol into dog brain synaptosomal plasma membranes (SPM) within the limits of concentration used (0.5-5 microM) follows an exponential curve described by the general formula y = a.ebx. This curve, which represents the total binding (specific and nonspecific), acquires sigmoid character in the presence of 100 microM cholesterol glucoside, with a Hill coefficient of h = 2.98 +/- 0.18. The specific activity of the Na+/K+-transporting ATPase and Ca2+-transporting ATPase rose after a 2-h preincubation of SPM with cholesterol (up to 5 microM) or its glucoside (up to 50 microM) to at least 50% above their original values. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) increased with cholesterol glucoside (50 microM) incorporation. Cholesterol (5 microM) had no effect on the DPH fluorescence polarization. Arrhenius plots of Na+/K+-transporting ATPase activity exhibited a break point at 23.2 +/- 1.1 degrees C in control SPM, which was elevated to 29.5 +/- 1.4 degrees C in SPM treated with cholesterol glucoside (50 microM) and abolished in SPM treated with cholesterol (5 microM). The allosteric properties of SPM-bound Na+/K+-transporting ATPase inhibited by F- and Ca2+-transporting ATPase inhibited by Na+ (as reflected by changes in the Hill coefficient) were modulated by cholesterol. It could be stated that cholesterol glucoside (50 microM) produced an increased packing of the bulk lipids, while cholesterol (5 microM) increased the fluidity of the lipid microenvironment of both Na+/K+-transporting ATPase and Ca2+-transporting ATPase.  相似文献   

7.
Aphanothece cells could take up Na(+) and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells preloaded with Na(+) exhibited Na(+) extrusion ability upon energizing with glucose. Na(+) was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na(+)-ionophore. Orthovanadate and CCCP strongly inhibited Na(+) uptake, whereas N, N'-dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na(+) but not with K(+), Ca(2+) and Li(+). The K(m) values for ATP and Na(+) were 1.66+/-0.12 and 25.0+/-1.8 mM, respectively, whereas the V(max) value was 0.66+/-0.05 mumol min(-1) mg(-1). Mg(2+) was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N-ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na(+)/H(+) antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na(+)-stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition.  相似文献   

8.
白细胞介素-2对大鼠心肌Ca2+ATPase和Na+ /K+ATPase的影响   总被引:3,自引:0,他引:3  
Cao CM  Xia Q  Fu C  Jiang HD  Ye ZG  Shan YL  Chan JZ 《生理学报》2003,55(1):83-90
为了探讨IL-2对心肌细胞内钙影响的可能机制,用光学法检测心肌肌浆网Ca^2 ATPase的活性,以及细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性。结果:(1)用IL-2(10、40、200、800U/ml)灌流心脏后,其肌浆网Ca^2 ATPase的活性随IL-2浓度的升高而增强;(2)在ATP浓度为0.1-4mmol/L时,Ca^2 ATPase的活性随ATP浓度的升庙则增强,由IL-2(200U/ml)灌流后的心脏获得肌浆网(SR),其Ca^2 ATPase的活性对ATP的反应强于对照组;(3)在[Ca^2 ]为1-40μmol/L时,心脏SR Ca^2 ATPase的活性随[Ca^2 ]增加而增强,而IL-2灌流心脏后分离的SR,其Ca^2 ATPase活性在[Ca^2 ]升高时没有明显改变;(4)用nor-BNI(10nmol/L)预处理5min后,IL-2(200U/ml)灌流后不再使SR Ca^2 ATPase的活性增强;(5)用PTX(5mg/L)预处理后,IL-2对SR Ca^2 ATPase的影响减弱;(6)用磷脂酶C(PLC)抑制剂U73122(5μmol/L)处理后,IL-2不再使SR Ca^2 ATPase活性增高;(7)用IL-2直接处理从正常大鼠分离的SR后,对SR Ca^2 ATPase活性无明显影响;(8)IL-2灌流后,对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase活性没有显著。上述结果表明,IL-2灌流心脏后使心肌肌浆网Ca^2 ATPase的活性增加,心肌细胞膜上的κ-阿片受体及其下游的G蛋白和PLC介导了IL-2的作用。尽管IL-2提高SR Ca^2 ATPase对ATP的反应性,但却抑制SR Ca^2 ATPase对钙离子的敏感性。IL-2对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性无明显影响。  相似文献   

9.
A monoclonal antibody (mAb50c) against the native porcine renal Na+/K(+)-transporting adenosinetriphosphatase (EC 3.6.1.37, ATP phosphohydrolase) (Na+/K(+)-ATPase) was characterized. The antibody could be classified as a conformation-dependent antibody, since it did not bind to Na+/K(+)-ATPase denatured by detergent and its binding was affected by the normal conformational changes of the enzyme induced by ligands. The binding was the greatest in the presence of Na+, ATP or Mg2+ (E1 form), slightly less in the presence of K+ (E2K form) and the least when the enzyme was phosphorylated, especially in the actively hydrolyzing form in the presence of Na+, Mg2+ and ATP. The antibody inhibited both the Na+,K(+)-ATPase activity and the K(+)-dependent p-nitrophenylphosphatase activity by 25%, but it had no effect on Na(+)-dependent ATPase activity. The antibody partially inhibited the fluorescence changes of the enzyme labeled with 5'-isothiocyanatofluorescein after the addition of orthophosphate and Mg2+, and after the addition of ouabain. Proteolytic studies suggest that a part of the epitope is located on the cytoplasmic surface of the N-terminal half of the alpha-subunit.  相似文献   

10.
(Na(+)-K+)ATPase and (Ca(++)-Mg++)ATPase are enzymes located in erythrocyte plasma membranes, driving back ions against the electrochemical gradient; (Na(+)-K+)ATPase transports 3 Na+ ions out of the cell, and 2 K+ ions into it for each hydrolyzed ATP molecule, whereas the Ca(2+)-pump transports Ca2+ ions out of the cells, by utilizing still the ATP hydrolysis. The method used to test the activity of the above mentioned enzymes is based on the measuring of the ADP quantity released during the reaction by HPLC, that is High Performance Liquid Chromatography; the chromatographic type is a Ion-Pair Reversed-Phase. This method presents the following important advantages for the assay of the enzymes we analysed: 1) It is reproducible through time; 2) It is perfectly linear; 3) It is extremely sensitive. This method allowed us to carry out a comparative study of (Na(+)-K+)ATPase and (Ca(++)-Mg++)ATPase in erythrocyte plasma membranes of several species of mammalia: man, horse, rabbit, lamb, rat. We recovered different values in ATPase activity; (Ca(++)-Mg++)ATPase shows a higher activity than Na(+)-K+)ATPase; moreover, some differences exist in the various Mammalia considered, with relation to each pump: the lamb shows the lowest activity for both pumps, whereas the rabbit shows the highest one. At present, the different values obtained are being interpreted and analysed. This method is also very versatile, since it allowed us to assess the Km value for Ca++ of the (Ca(++)-Mg++)ATPase in erythrocyte plasma membranes of rabbit. The value resulted to be 100 microMs, thus 10 times higher than the human Km value for the Ca++.  相似文献   

11.
Na+/K(+)-ATPase, Mg(2+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase are examined in cultured human skeletal muscle cells of different maturation grade and in human skeletal muscle. Na+/K(+)-ATPase is investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase). SR Ca(2+)-ATPase is examined by ELISA, Ca(2+)-dependent phosphorylation and its activities on ATP and 3-O-methylfluorescein phosphate. Na+/K(+)-ATPase and SR Ca(2+)-ATPase are localized by immunocytochemistry. The activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase show a good correlation with the other assayed parameters of these ion pumps. All ATPase parameters investigated increase with the maturation grade of the cultured muscle cells. The number of ouabain-binding sites and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-MFPase are significantly higher in cultured muscle cells than in muscle. The Mg(2+)-ATPase activity, the content of SR Ca(2+)-ATPase and the activities of SR Ca(2+)-ATPase and Ca(2+)-dependent 3-O-MFPase remain significantly lower in cultured cells than in muscle. The ouabain-binding constant and the molecular activities of Na+/K(+)-ATPase and SR Ca(2+)-ATPase are equal in muscle and cultured cells. During ageing of human muscle the activity as well as the concentration of SR Ca(2+)-ATPase decrease. Thus the changes of the activities of the ATPases are caused by variations of the number of their molecules. Na+/K(+)-ATPase is localized in the periphery of fast- and slow-twitch muscle fibers and at the sarcomeric I-band. SR Ca(2+)-ATPase is predominantly confined to the I-band, whereas fast-twitch fibers are much more immunoreactive than slow-twitch fibers. The presence of cross-striation for Na+/K(+)-ATPase and SR Ca(2+)-ATPase in highly matured cultured muscle cells indicate the development and subcellular organization of a transverse tubular system and SR, respectively, which resembles the in vivo situation.  相似文献   

12.
The only known cellular action of AlF4- is to stimulate the G-proteins. The aim of the present work is to demonstrate that AlF4- also inhibits 'P'-type cation-transport ATPases. NaF plus AlCl3 completely and reversibly inhibits the activity of the purified (Na+ + K+)-ATPase (Na+- and K+-activated ATPase) and of the purified plasmalemmal (Ca2+ + Mg2+)-ATPase (Ca2+-stimulated and Mg2+-dependent ATPase). It partially inhibits the activity of the sarcoplasmic-reticulum (Ca2+ + Mg2+)-ATPase, whereas it does not affect the mitochondrial H+-transporting ATPase. The inhibitory substances are neither F- nor Al3+ but rather fluoroaluminate complexes. Because AlF4- still inhibits the ATPase in the presence of guanosine 5'-[beta-thio]diphosphate, and because guanosine 5'-[beta gamma-imido]triphosphate does not inhibit the ATPase, it is unlikely that the inhibition could be due to the activation of an unknown G-protein. The time course of inhibition and the concentrations of NaF and AlCl3 required for this inhibition differ for the different ATPases. AlF4- inhibits the (Na+ + K+)-ATPase and the plasmalemmal (Ca2+ + Mg2+)-ATPase noncompetitively with respect to ATP and to their respective cationic substrates, Na+ and Ca2+. AlF4- probably binds to the phosphate-binding site of the ATPase, as the Ki for inhibition of the (Na+ + K+)-ATPase and of the plasmalemmal (Ca2+ + Mg2+)-ATPase is shifted in the presence of respectively 5 and 50 mM-Pi to higher concentrations of NaF. Moreover, AlF4- inhibits the K+-activated p-nitrophenylphosphatase of the (Na+ + K+)-ATPase competitively with respect to p-nitrophenyl phosphate. This AlF4- -induced inhibition of 'P'-type cation-transport ATPases warns us against explaining all the effects of AlF4- on intact cells by an activation of G-proteins.  相似文献   

13.
H+,K(+)-ATPase, Na+,K(+)-ATPase, and Ca(2+)-ATPase belong to the P-type ATPase group. Their molecular mechanisms of energy transduction have been thought to be similar until now. Ca(2+)-ATPase and Na+,K(+)-ATPase are phosphorylated from both ATP and acetyl phosphate (ACP) and dephosphorylated, resulting in active ion transport. However, we found that H+,K(+)-ATPase did not transport proton nor K+ when ACP was used as a substrate, resulting in uncoupling between energy and ion transport. ACP bound competitively to the ATP-binding site of H+,K(+)-ATPase. The hydrolysis of ACP by H+,K(+)-ATPase was stimulated by cytosolic K+, the half-maximal stimulating K+ concentration (K0.5) being 2.5 mM, whereas the hydrolysis of ATP was stimulated by luminal K+, the K0.5 being 0.2 mM. Furthermore, during the phosphorylation from ACP in the absence of K+, the fluorescence intensity of H+,K(+)-ATPase labeled with fluorescein isothiocyanate increased, but those of Na+,K(+)-ATPase and Ca(2+)-ATPase decreased. These results indicate that phosphorylated intermediates of H+,K(+)-ATPase formed from ACP are not rich in energy and that there is a striking difference(s) in the mechanism of energy transduction between H+,K(+)-ATPase and other cation-transporting ATPases.  相似文献   

14.
15.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

16.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

17.
The pH dependence of the Ca2(+)-transporting ATPase of bovine cardiac sarcolemma was determined in a membrane vesicle preparation. The maximal velocity (Vmax) at saturating external Ca2+ showed a sigmoidal pH dependence with maximal values in the 6.0-6.5 range, a half-maximal value at 7.2 and minimal (less than or equal to 15%) values at pH greater than or equal to 8.0. The apparent affinity for Ca2+ (1/Km) varied over 10(4)-fold for 6.0 less than or equal to pH less than or equal to 8.5, increasing with increasing pH. Plots of log(1/Km) vs. pH were biphasic. In the acid range (6.0 less than or equal to pH less than or equal to 7.2), a slope of 2.6 was observed for the calmodulin-activated form of the pump. For 7.2 less than or equal to pH less than or equal to 8.5, a slope of 0.5 was observed. At pH 7.4, the Km is approx. 48 +/- 19 nM. The Ca2+ pump of cardiac sarcoplasmic reticulum in the same preparation had a Km of 304 +/- 115 nM and showed a similar pH dependence except that the slope in the acid range was 1.7. When calmodulin was removed from the sarcolemmal pump, its Km was raised to approx. 1.0 microM, the slope in the acid range was reduced to 1.7 and the Vmax was markedly reduced. The results are explicable in terms of a model in which each of the two Ca2+ binding sites on the pump contains two buried COO- groups responsible for high affinity. The Km effect is explained by 2 H+ vs. 1 Ca2+ competition for occupation of each of the two cytoplasmically-oriented translocators (4 H+ vs. 2 Ca2+). The Vmax effect is explained by counter-transport of H+. The findings are considered in terms of the published amino acid sequence of the cardiac sarcolemmal pump and recent site-directed mutagenesis vs. function studies identifying the Ca2+ binding site in the skeletal sarcoplasmic reticulum pump. The kinetic data are also applied to pump behavior under conditions of ischemia and acidosis.  相似文献   

18.
This paper reports on the kinetic and thermodynamic parameters describing the interaction of selected digitalis derivatives with hog and guinea-pig cardiac (Na+ + K+)-ATPase (Na+/K+-transporting ATPase EC 3.6.1.37). 32 digitalis derivatives were characterized as to the values of the delta G0', delta G----not equal to, and delta G----not equal to quantities in their interaction with (Na+ + K+)-ATPase from hog cardiac muscle in the presence of ATP, Mg2+, Na+ and K+. Nine derivatives were additionally characterized as to the values of the delta H0', delta S0', delta H----not equal to, delta S----not equal to, delta H not equal to, and delta S not equal to quantities in their interaction with the hog enzyme promoted by ATP, Mg2+ and Na+ in the presence or absence of K+. The formation of the inhibitory complexes is in any case an endothermic, entropically driven process. The Gibbs energy barriers in the formation and dissociation of the complexes, delta G----not equal to and delta G----not equal to, are imposed by large, unfavourable delta H not equal to values. K+ decreases the delta G0' value by increasing the delta G----not equal to value more than the delta G----not equal to value. In comparison with hog (Na+ + K+)-ATPase, the interaction of three derivatives with guinea-pig cardiac enzyme in the presence of ATP, Mg2+, Na+ and K+ is characterized by lower delta G0' values caused by lower favourable delta S0' values, and is accompanied by lower delta G----not equal to values. The magnitude of the kinetic parameters and the characteristic of the thermodynamic quantities describing the interaction between various digitalis derivatives and (Na+ + K+)-ATPase, indicate the induction of substantial conformational changes in the enzyme protein. A large entropy gain in the enzyme protein, observed irrespective of enzyme origin and ligation, appears to be the common denominator of the inhibitory action of all digitalis derivatives studied, suggesting that the digitalis-elicited relaxation of high conformational energy (negentropy strain) of the enzyme protein is the thermodynamic essence of the reversible inactivation of (Na+ + K+)-ATPase.  相似文献   

19.
The gastric H+/K(+)-transporting adenosine triphosphatase (H+/K+ ATPase) (proton pump) consists of a catalytic alpha-subunit and a recently proposed 60-90-kDa glycoprotein beta-subunit. Using dog gastric membranes as the antigen, we have produced two murine monoclonal antibodies, 4F11 (IgG1) and 3A6 (IgA), which are specific for the 60-90-kDa glycoprotein. The monoclonal antibodies (1) specifically stained the cytoplasm of unfixed and formalin-fixed dog gastric parietal cells; (2) specifically reacted by ELISA with gastric tubulovesicular membranes; (3) recognised epitopes located on the luminal face of parietal cell tubulovesicular membranes, the site of the proton pump, by immunogold electron microscopy; (4) immunoblotted a 60-90-kDa molecule from tubulovesicular membranes and a 35-kDa component from peptide N-glycosidase-F-treated membrane extracts; (5) immunoblotted the 60-90-kDa parietal cell autoantigen associated with autoimmune gastritis and pernicious anemia, purified by chromatography on parietal cell autoantibody- or tomato-lectin-Sepharose 4B affinity columns, and the 35-kDa protein core of this autoantigen; this autoantigen has amino acid sequence similarity to the beta-subunit of the related Na+/K(+)-transporting adenosine triphosphatase (Na+/K+ ATPase) [Toh et al. (1990) Proc. Natl Acad. Sci. 87, 6418-6422]; (6) co-precipitated a molecule of 95 kDa with the 60-90-kDa molecule from 125I-labelled detergent extracts of dog tubulovesicular membranes; and (7) co-purified the catalytic alpha-subunit of the H+/K+ ATPase with the 60-90-kDa molecule by immunoaffinity chromatography of tubulovesicular membrane extracts on a monoclonal antibody 3A6-Sepharose 4B column, indicating a physical association between the two molecules. These results provide further evidence that the 60-90-kDa glycoprotein is the beta-subunit of the gastric H+/K+ ATPase. We conclude that the monoclonal antibodies specifically recognise luminal epitopes on the 35-kDa core protein of the 60-90-kDa beta-subunit of the gastric proton pump, a major target molecule in autoimmune gastritis and pernicious anaemia. These monoclonal antibodies will be valuable probes to study the structure and function of this associated beta-subunit, as well as the ontogeny of the gastric proton pump.  相似文献   

20.
In this paper we demonstrate that a vacuolar-type H(+)-ATPase energizes secondary active transport in an insect plasma membrane and thus we provide an alternative to the classical concept of plasma membrane energization in animal cells by the Na+/K(+)-ATPase. We investigated ATP-dependent and -independent vesicle acidification, monitored with fluorescent acridine orange, in a highly purified K(+)-transporting goblet cell apical membrane preparation of tobacco hornworm (Manduca sexta) midgut. ATP-dependent proton transport was shown to be catalyzed by a vacuolar-type ATPase as deduced from its sensitivity to submicromolar concentrations of bafilomycin A1. ATP-independent amiloride-sensitive proton transport into the vesicle interior was dependent on an outward-directed K+ gradient across the vesicle membrane. This K(+)-dependent proton transport may be interpreted as K+/H+ antiport because it exhibited the same sensitivity to amiloride and the same cation specificity as the K(+)-dependent dissipation of a pH gradient generated by the vacuolar-type proton pump. The vacuolar-type ATPase is exclusively a proton pump because it could acidify vesicles independent of the extravesicular K+ concentration, provided that the antiport was inhibited by amiloride. Polyclonal antibodies against the purified vacuolar-type ATPase inhibited ATPase activity and ATP-dependent proton transport, but not K+/H+ antiport, suggesting that the antiporter and the ATPase are two different molecular entities. Experiments in which fluorescent oxonol V was used as an indicator of a vesicle-interior positive membrane potential provided evidence for the electrogenicity of K+/H+ antiport and suggested that more than one H+ is exchanged for one K+ during a reaction cycle. Both the generation of the K+ gradient-dependent membrane potential and the vesicle acidification were sensitive to harmaline, a typical inhibitor of Na(+)-dependent transport processes including Na+/H+ antiport. Our results led to the hypothesis that active and electrogenic K+ secretion in the tobacco hornworm midgut results from electrogenic K+/nH+ antiport which is energized by the electrical component of the proton-motive force generated by the electrogenic vacuolar-type proton pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号