首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
An initial event in T cell activation is the specific adherence of T cells via their T cell receptor to the MHC peptide complex. We have studied this adherence by incubating T cells with preformed HLA DR4Dw4 peptide complexes attached to a solid support. Adherence of sodium 51Cr-labeled T cell clones specific for the influenza hemagglutinin peptide, HA 307-319, was maximal after 15 min and was specific for the HLA DR4Dw4-HA 307-319 complex. The binding was temperature dependent and could be blocked with azide or protein kinase C inhibitors, indicating that for adherence the T cells need to be metabolically active and have a functioning protein kinase C pathway. The adherence could be blocked with CD4- or CD3-reactive murine mAb, suggesting that the TCR and CD4 molecules work in concert to induce strong adherence to the HLA DR4Dw4-HA 307-319 complex. A subsequent event in T cell activation is proliferation, which is thought to need additional proteins such as IL-1 or other adhesion molecules. MHC peptide complexes coated on microtiter plates also induced proliferation in the human T cell clones. Removal of any monocytes by treatment of human T cell clones with anti-CD14 in conjunction with C, followed by purification over a nylon wool column, did not abrogate proliferation. After prolonged culture of the T cell clones in plates coated with peptide-pulsed HLA DR4Dw4 in the presence of IL-2, the T cell clones continued to proliferate in response to peptide. These results suggest that human T cell clones do not require a second signal from a monocyte or other APC to proliferate.  相似文献   

2.
A peptide display library was evaluated as a means to identify peptide binding motifs for class II molecules. Peptides expressed as part of a soluble fusion protein with a maltose binding protein (malE) were produced by Escherichia coli. Constructs containing the high-affinity binding influenza hemagglutinin peptide 307W–319 (mal-HA) or the low-affinity binding tetanus toxoid peptide 830–843 (mal-TT) were used as controls. mal-HA, but not mal-TT, inhibited synthetic biotinylated-HA peptide from binding to purified DR4 Dw4 molecules in a dose-dependent manner. The fusion-peptide presentation system was also evaluated for its ability to induce antigen-specific T cell proliferation. DR4 Dw4+ B cells pulsed with mal-HA, but not mal-TT, induced dose-dependent proliferation of an HA-specific DR4 Dw4-restricted T cell line to the same extent as synthetic HA peptide. Using this type of peptide display library, it may be possible to determine the antigenic specificity of T cell clones isolated from patients with autoimmune diseases.  相似文献   

3.
Single amino acid substitutions of Ag and MHC were used to analyze the fine structure of the influenza hemagglutinin (HA)-derived epitope (HA 307-319) recognized in the context of DR7 molecules by a T cell clone. Putative T cell (HA 308, 310, 311, 313, and 316) and DR (HA 309, 312, and 317) contact residues of the Ag were identified by the use of single amino acid-substituted analogs that were tested for their T cell-activating and DR-binding capacities. The peptide-DR7-T cell interaction was further characterized by the use of a panel of 13 site-directed DR7 mutant transfectants analyzed for their capacity to present Ag to T cells, and for their purified mutant DR7 molecules to bind HA 307-319 or its single amino acid-substituted analogs. Eight mutants lost their Ag-presenting function, whereas only one had any decrease in peptide binding. Finally, for three of the mutants it was possible to correct the deleterious effects of mutation by using a particular single amino acid-substituted analog of the peptide molecule. The observed pattern of complementation led to a model that predicts that the Ag assumes an extended conformation, with a turn, in the binding groove, such that the following residues are in close proximity: DR 86-HA 309, DR 71-HA 312, DR 30-HA 314, and 315.  相似文献   

4.
A novel mechanism for inhibition of T cell responses is described. Using the recognition of the influenza hemagglutinin (HA) 307-319 peptide in the context of DR1 class II major histocompatibility complex molecules, we have found that nonstimulatory analogs of the HA peptide preferentially inhibit HA-specific T cells in inhibition of antigen presentation assays. This antigen-specific effect could be generalized to another DR1-restricted peptide, Tetanus toxoid 830-843. Direct binding and cellular experiments indicated that the mechanism responsible was distinct from competition for binding to DR1 molecules. Likewise, negative signaling and induction of T cell tolerance could also be excluded as effector mechanisms. Thus, the most likely mechanism for this effect is engagement of antigen-specific T cell receptors by DR1-peptide analog complexes, which results in antigen-specific competitive blocking of T cell responses by virtue of their capacity to compete with DR1-antigen complexes for binding to the T cell receptor.  相似文献   

5.
Rheumatoid arthritis is an autoimmune disease in which susceptibility is strongly associated with the expression of specific HLA-DR haplotypes, including DR1 (DRB1*0101) and DR4 (DRB1*0401). As transgenes, both of these class II molecules mediate susceptibility to an autoimmune arthritis induced by immunization with human type II collagen (hCII). The dominant T cell response of both the DR1 and DR4 transgenic mice to hCII is focused on the same determinant core, CII(263-270). Peptide binding studies revealed that the affinity of DR1 and DR4 for CII(263-270) was at least 10 times less than that of the model Ag HA(307-319), and that the affinity of DR4 for the CII peptide is 3-fold less than that of DR1. As predicted based on the crystal structures, the majority of the CII-peptide binding affinity for DR1 and DR4 is controlled by the Phe(263); however, unexpectedly the adjacent Lys(264) also contributed significantly to the binding affinity of the peptide. Only these two CII amino acids were found to provide binding anchors. Amino acid substitutions at the remaining positions had either no effect or significantly increased the affinity of the hCII peptide. Affinity-enhancing substitutions frequently involved replacement of a negative charge, or Gly or Pro, hallmark amino acids of CII structure. These data indicate that DR1 and DR4 bind this CII peptide in a nearly identical manner and that the primary structure of CII may dictate a different binding motif for DR1 and DR4 than has been described for other peptides that bind to these alleles.  相似文献   

6.
We have investigated the interaction between DR1 molecules and the two antigenic peptides, tetanus toxoid 830-843 and hemagglutinin 307-319, previously known to bind most DR alleles (degenerate binding) and to be recognized by the same T cell clones in the context of different DR alleles (promiscuous T cell recognition). The DR1 affinity of these two peptides was compared with that of two other different T cell epitopes (pertussis toxin 30-42 and ragweed allergen Ra3 51-65). It was found that degeneracy and promiscuity were associated with high affinity interactions, whereas binding and T cell selectivity were associated with weaker interactions. Thus, the selectivity of DR-peptide interactions, as is commonly observed with the antibody molecule, appears to be inversely correlated to affinity. Several singly substituted analogs of the hemagglutinin 307-319 determinant have also been tested for capacity to bind various DR alleles (DR1, DR2, DR5, and DR7). The results obtained suggest that this determinant may bind the different DR alleles in a similar orientation. Similar conclusions were reached when the interaction between the tetanus toxoid 830-843 determinant and three different DR alleles (DR1, DR2, and DR7) was studied following the same experimental approach. When crucial DR-binding residues of the two peptides were compared, it was found that they were very similar in both chemical nature and spacing in the peptide primary structure, suggesting that the two peptides may bind DR in a very similar orientation. Finally, a putative motif has been derived and shown to be present in a majority of the DR binders tested, but only in a minority of the non-DR binding peptides.  相似文献   

7.
While T cells have been clearly implicated in a number of disease processes including autoimmunity, graft rejection, and atypical immune responses, the precise Ags recognized by the pathogenic T cells have often been difficult to identify. This has particularly been true for MHC class II-restricted CD4+ T cells. Although such cells can be demonstrated to have undergone clonal expansion at sites of pathology, they are frequently difficult to establish as stable T cell clones. Furthermore, in general, larger peptides in higher concentrations are required to stimulate CD4+ T cells than CD8+ T cells, which makes some of the techniques developed to identify CD8+ T cell Ags impractical. To circumvent some of these problems, we developed a model system consisting of two parts. The first part involves the construction of an indicator T cell hybridoma expressing a chimeric TCR comprised of murine constant regions and human variable regions specific for influenza hemagglutinin 307-319 presented by DR4. The second part consists of a library of fibroblasts each expressing multiple peptides as amino terminal covalent extensions of the beta-chain of HLA-DR4 (DRA1*0101, DRB1*0401). Using this model system, we screened approximately 100, 000 peptides and identified three novel peptides stimulatory for the HA1.7 TCR. While there is some convergence at residues known to be important for T cell recognition, all three peptides differ markedly from each other and bear little resemblance to wild-type hemagglutinin 307-319.  相似文献   

8.
We have examined the role of 12 polymorphic residues of the beta-chain of the HLA-DR1 class II molecule in T cell recognition of an epitope of pertussis toxin. Murine L cell transfectants expressing wild-type or mutant DR1 molecules (containing single amino acid substitutions in DR(beta 1*0101)) were used as APC in proliferation assays involving nine DR1-restricted T cell clones specific for peptide 30-42 of pertussis toxin. Four different patterns of recognition of the mutants were found among the pertussis-specific clones. Residues in the third hypervariable region (HVR) of DR(beta 1*0101) are critically important for all the T cell clones; amino acid substitutions at positions 70 and 74 abrogated recognition by all of the T cell clones, and substitutions at positions 67 and 71 eliminated recognition by most of the clones. In contrast, most single amino acid substitutions in the first and second HVR, predicted to be located in the floor of the peptide binding groove, had little or no effect on the proliferative responses of these clones. However, the involvement of beta-chain first and second HVR residues was demonstrated by the inability of transfectants expressing wild-type DR(beta 1*0404) (DR4Dw14) or DR(beta 1*1402) (DR6Dw16) to present peptide to these clones. These beta-chains have completely different first and second HVR compared with DR(alpha,beta 1*0101) although the third HVR are identical. These results illustrate the functional importance of third HVR residues of DR(beta 1*0101) and allow definition of the molecular interactions of the DR1 molecule with the 30-42 peptide.  相似文献   

9.
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.  相似文献   

10.
The contributions of the amino acids at 13 polymorphic positions in the HLA-DR7 beta 1 chain to T cell recognition of two antigenic peptides of tetanus toxin (p2 and p30) were assessed using transfectants expressing mutant DR7 beta 1 chains as APC for six toxin-specific T cell clones with two different restriction patterns: monogamous (restricted by DR7 only) or promiscuous (restricted by DR7; DR1; DR2, Dw21; and DR4, Dw4). Each of the 13 substitutions significantly decreased or eliminated the ability of the DR7 molecule to present a peptide to one or more of the T cell clones, but none of the substitutions abolished recognition by all clones. Interestingly, substitutions at positions 4 and 25, which are predicted in the class II model to be located outside the peptide binding groove, decreased the ability of the DR7 molecule to present Ag to some clones but not to others. Each of the four clones specific for the p2 peptide and the two clones specific for peptide p30 had a different reactivity pattern to the panel of DR7 beta 1 mutants, indicating that the TCR of each clone has a different view of the p2/DR7 or p30/DR7 complex. These data emphasize the complexity of the interactions of multiple residues in DR7 beta 1 chains in Ag-specific T cell recognition.  相似文献   

11.
The self-restriction of Ag-specific T cell responses is interpreted as the result of a positive selection of the individual's T cell specificities for their compatibility with self-MHC molecules. If the T cell receptor (TCR) specificities in any given individual have an affinity for syngeneic MHC molecules, it is unclear how they interact with allogeneic MHC structures. To approach this question, we analyzed 123 alloreactive HLA-DR4 Dw4 or Dw14 specific T cell clones that were generated from responder/stimulator combinations with defined disparities in the HLA-DR beta 1-chain. Sets of T cell clones were established from three different HLA-Dw4+ responders and compared for their fine specificities. The majority of HLA-DR4 Dw14 specific T cell clones co-recognized HLA-DR1 Dw1+ (33 to 36% of all T cell clones) or HLA-DRw14 Dw16+ (26 to 33%) stimulators, both of which share very similar sequences in the third hypervariable region of the HLA-DR beta 1-chain with the HLA-DR4 alleles Dw4 and Dw14. These data suggest that sequence and structural similarities in the alpha-helical portions of the HLA-DR molecule impose a strong bias on the recognition of allotargets. The second haplotype of the responder did not appear to affect the typical fingerprint of T cell recognition except for the deletion of self-reactive TCR specificities. Nonrandom usage of TCR specificities in anti-HLA-DR responses was also found for HLA-DRw11/DRw13+ and HLA-DRw11/DR7+ T cell donors who did not share any obvious polymorphic sequence stretches with the allostimulators HLA-DR4 Dw4 or Dw14. T cell clones from an HLA-DRw11/DRw13+ responder functionally resembled the TCR specificities derived from the HLA-DR4 Dw4+ donors. T cell clones derived from an HLA-DRw11/DR7+ individual were characterized by a distinct cross-reactivity pattern preferring HLA-DRw13 Dw19+ (50 to 60%) and HLA-DR3+ (43 to 57%) stimulator cells. These findings suggest that the responder HLA-DR alleles influence the structural constraints in the recognition of allo-HLA-DR molecules in closely related and in completely disparate responder/stimulator combinations.  相似文献   

12.
Plasticity of TCR interactions during CD4(+) T cell activation by an MHC-peptide complex accommodates variation in the peptide or MHC contact sites in which recognition of an altered ligand by the T cell can modify the T cell response. To explore the contribution of this form of TCR cross-recognition in the context of T cell selection on disease-associated HLA molecules, we have analyzed the relationship between TCR recognition of the DRB1*0401- and DRB1*0404-encoded HLA class II molecules associated with rheumatoid arthritis. Thymic reaggregation cultures demonstrated that CD4(+) T cells selected on either DRB1*0401 or DRB1*0404 could be subsequently activated by the other MHC molecule. Using HLA tetramer technology we identify hemagglutinin residue 307-319-specific T cells restricted by DRB1*0401, but activated by hemagglutinin residues 307-319, in the context of DRB1*0404. One such clone exhibits an altered cytokine profile upon activation with the alternative MHC ligand. This altered phenotype persists when both class II molecules are present. These findings directly demonstrate that T cells selected on an MHC class II molecule carry the potential for activation on altered self ligands when encountering Ags presented on a related class II molecule. In individuals heterozygous for these alleles the possibility of TCR cross-recognition could lead to an aberrant immune response.  相似文献   

13.
A new DR beta-chain allele is defined that is identical to the previously described DR6b molecule except for the first hyperpolymorphic region, where the new allele displays the same polymorphisms found on DR8 and DR12 genes. Two distinct epitopes have been mapped on this new allele. The polymorphism in common with DRw8 and DRw12 is recognized by mAb GS313-9D11. However, alloreactive T cell clones specific for DR6b cells (Dw9) recognize this allele, whereas Dw8-specific T cell clones do not. The mAb determinant maps to the first beta-sheet and probably involves a polymorphic residue lying outside the helix. The binding of mAb 9D11 to this region does not interfere with TCR binding. Alloreactive T cell recognition is associated with polymorphisms located predominantly on the alpha-helical portion of the molecule.  相似文献   

14.
The molecular basis of class II MHC allelic control of T cell responses.   总被引:3,自引:0,他引:3  
To identify the molecular basis for the effects of MHC molecule polymorphism on T cell responses, we have combined functional T cell response testing with measurements of peptide binding to the class II MHC molecules on transfected cells. Our studies identify a small subset of spatially localized polymorphic residues of the E alpha E beta dimer (strand residue beta 29, and helix residues beta 72 and beta 75) regulating cytochrome c peptide presentation by two distinct mechanisms. The first effect is on quantitative control of net peptide binding. The replacement of the valine found at position beta 29 in E beta k with the glutamic acid found in E beta b results in a selective loss of pigeon cytochrome peptide but not moth cytochrome peptide binding to the resultant mutant E alpha E beta k molecule. Reciprocally, the replacement of glutamic acid at beta 29 in E beta b with valine results in a gain of pigeon peptide binding. These changes in binding parallel changes in T cell responses in vitro to these peptide-E alpha E beta combinations and mirror the in vivo immune response gene phenotypes of mice expressing E alpha E beta k and E alpha E beta b. E alpha E beta s molecules, which have a beta 29 glutamic acid, are nevertheless able to bind and present pigeon cytochrome peptides, and this is due to changes in helix residues beta 72 and beta 75 that compensate for the negative effect of the beta 29 glutamic acid. The second activity is a critical change in the conformation of the peptide bound to the same extent by distinct MHC molecules, as revealed by changes in T cell responses to moth cytochrome peptides presented by two E alpha E beta molecules differing only at position beta 29. Both of these effects can be ascribed to a single polymorphic residue modeled to be inaccessible to TCR contact (beta 29), providing a striking demonstration of how MHC molecule polymorphism can modify T cell-dependent immune responses without direct physical participation in the receptor recognition event.  相似文献   

15.
We have developed a T cell activation-based system that allows for the selection of TCRs with defined peptide/MHC specificities from libraries in which complementarity-determining region (CDR) sequences have been randomized by in vitro mutagenesis. Using this system, we have explored the sequence requirements for CDR1 and CDR2 of the TCR alpha-chain in a human T cell response characterized by restricted Valpha and Vbeta usage. Libraries of T cells expressing receptors built on the framework of a TCR specific for the influenza virus peptide hemagglutinin 307-319 presented by HLA-DR4, but with random sequences inserted at CDR1alpha or CDR2alpha, were selected for response to the same peptide/MHC ligand. A wide variety of CDR2alpha sequences were found to be permissive for recognition. Indeed, >25% of T cell clones chosen at random displayed a significant response. In contrast, a similar challenge of a randomized CDR1alpha library yielded only the parental sequence, and then only after multiple rounds of selection. T cell clones cross-reactive on closely related HLA alleles (subtypes of DR4) could be isolated from randomized libraries, but not clones restricted by more distantly related alleles such as HLA-DR1. These results indicate that, in the context of this T cell response, the structural requirements for recognition at CDR1alpha are significantly more restricted than at CDR2alpha. This system for mutation and selection of TCRs in vitro may be of use in engineering T cells with defined specificities for therapeutic applications.  相似文献   

16.
The effect of pH on class II-peptide interactions has been analyzed using several mouse (IAd, IAk, IEd, IEk) and human (DR1, DR5, DR7) MHC specificities, and eight different class II-restricted determinants. In direct binding assays, acidic conditions led to increased binding capacity for many class II-peptide combinations. IE molecules seemed to bind optimally around pH 4.5, whereas IA molecules displayed binding optima in the 5.5 to 6.5 range. In contrast, the DR molecules studied were, in most cases, affected only marginally by pH changes in the 4.5 to 7.0 range. Despite these apparent isotype-specific trends, no general rule could be formulated, because even for the same class II molecules, the binding capacity could be increased for many peptides when the binding was performed under acidic conditions, was unaffected for some, and even decreased for others. The mechanisms responsible for this complex behavior were analyzed in more detail by kinetic and equilibrium analysis of three different class II-peptide combinations (IAd/OVA 323-339, IAk/HEL 46-61, and DR1/HA 307-319). It was found that acidic pH conditions could affect both on and off rates for class II-peptide complexes. Depending on the net balance of these effects, either increases, decreases, or no effect on overall affinities at equilibrium were detected. In the case of IAd/OVA 323-339, it was also found that acidic conditions influenced the binding capacity of class II molecules by increasing the fraction of sites available for peptide binding, presumably by favoring dissociation of endogenously bound, acid-sensitive peptides.  相似文献   

17.
18.
The T cell hybridomas 231F1 and 12H5 constitutively secrete glycosylation-inhibiting factor (GIF) and glycosylation-enhancing factor (GEF), respectively, which lack affinity for OVA-coupled Sepharose. When the 231F1 and 12H5 cells were stimulated by OVA-pulsed syngeneic macrophages, however, GIF and GEF produced by the cells had affinity for OVA. Both the OVA-binding GIF from the 231F1 cells and OVA-binding GEF from the 12H5 cells bound to a mAb against TCR-alpha beta and a mAb against TCR-alpha, suggesting a serologic relationship between TCR and OVA-binding factors. However, the OVA-binding GIF and GEF bound to mAb 14-12 and 14-30, respectively. Because these mAb do not bind TcR alpha beta-chains, it appears that the Ag-binding factors are different from TCR itself. The OVA-binding factors from both 12H5 cells and 231F1 cells do not bind to urea-denatured OVA. The binding of the factors to OVA Sepharose was inhibited by a peptide corresponding to residues 307-317 (P307-317) in the native OVA, but not by the peptide corresponding to residues 323-339 (P323-339). Furthermore, the OVA-binding factors bound to P306-319-coupled Sepharose but not to P323-339-coupled Sepharose, and were recovered by elution of the former Sepharose at acid pH. The binding of OVA to anti-OVA antibodies was not inhibited by either peptide. Inasmuch as the 231F1 cells and 12H5 cells can be stimulated by P307-317 in the context of a MHC product, it appears that the Ag-binding factors and TCR-alpha beta on the cell sources of the factors may recognize the same epitope in the OVA molecules. The results also showed that Ag-binding factors and antibodies recognize distinct epitopes in the Ag molecules.  相似文献   

19.
The differentiation of naive CD4(+) Th cells into Th1 and Th2 phenotypes is influenced by cytokines, concentration of Ag, accessory molecules, and the affinity of the MHC-TCR interaction. To study these factors in human memory T cells, T cell lines with Th1 or Th2 phenotypes specific for the peptide hemagglutinin (HA)(307-319) in the context of DRB1*0401 were established from the peripheral blood of an individual previously vaccinated for influenza virus. Flow cytometric analysis with fluorescent-labeled MHC class II tetramers was used to analyze TCR avidity: the Th2 line bound the HLA-DR*0401-HA(307-319) tetramers with higher mean avidity, although the range of binding avidity largely overlapped with the Th1 line. High-affinity Th1 and Th2 lines were established for further study by FACS sorting. When activated with plate-bound HLA-DR*0401-HA(307-319) monomers, the Th1 line proliferated and produced IFN-gamma without additional costimulation whereas the Th2 line required the addition of soluble anti-CD28 Ab to induce proliferation and IL-5 production, but this requirement could be overcome with high concentrations of plate-bound monomer alone. IL-2 production was dependent on costimulation in both cell lines. These findings demonstrate that upon antigenic rechallenge, Th1 and Th2 cells differ in their response to Ag-specific stimulation. Th2 cells were sensitive to the strength of signal to a greater degree than Th1 cells and required costimulation through CD28 for maximal proliferation. These distinctions between Th1 and Th2 activation are not consistent with a simple avidity model of Ag recognition and indicate both qualitative and quantitative differences in determining cell lineage commitment.  相似文献   

20.
To define the relative contributions of HLA and peptide contacts with TCR complementarity-determining region (CDR) 3 residues in T cell recognition, systematic mutagenesis and domain swapping was conducted on two highly similar TCRs that both respond to the influenza hemagglutinin (HA) peptide, HA307-319, but with different HLA restrictions. Despite the primary sequence similarity of these TCRs, exchange of as little as two CDR3 residues between them completely abrogated responsiveness. At position 95 within CDR3alpha, various substitutions still allowed for some degree of recognition. One modest substitution, alanine for glycine (essentially the addition of a methyl group), significantly broadened the specificity of the TCR. Transfectants expressing this mutant TCR responded strongly in the context of multiple HLA-DR alleles and to HA peptide variants with substitutions at each TCR contact residue. These results suggest that the conformations of CDR3 loops are crucial to TCR specificity and that it may not be reliable to extrapolate from primary sequence similarities in TCRs to similarities in specificity. The ease with which a broad specificity is induced in this mutant TCR has implications for the mechanisms and frequency of alloreactivity and promiscuity in T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号