首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Foamy virus (FV) particle egress is unique among retroviruses because of its essential requirement for Gag and Env coexpression for budding and particle release. The FV glycoprotein undergoes a highly unusual biosynthesis resulting in the generation of three particle-associated, mature subunits, leader peptide (LP), surface (SU), and transmembrane (TM), derived from a precursor protein by posttranslational proteolysis mediated by furin or furinlike proteases. Previously at least three LP products of different molecular weights were detected in purified FV particles. Here we demonstrate that the higher-molecular-weight forms gp28LP and gp38LP are ubiquitinated variants of the major gp18LP cleavage product, which has a type II membrane topology. Furthermore, we show that all five lysine residues located within the N-terminal 60-amino-acid cytoplasmic domain of gp18LP can potentially be ubiquitinated, however, there seems to be a preference for using the first three. Inactivation of ubiquitination sites individually resulted in no obvious phenotype. However, simultaneous inactivation of the first three or all five ubiquitination sites in gp18LP led to a massive increase in subviral particles released by these mutant glycoproteins that were readily detectable by electron microscopy analysis upon expression of the ubiquitination-deficient glycoprotein by itself or in a proviral context. Surprisingly, only the quintuple ubiquitination mutant showed a two- to threefold increase in single-cycle infectivity assays, whereas all other mutants displayed infectivities similar to that of the wild type. Taken together, these data suggest that the balance between viral and subviral particle release of FVs is regulated by ubiquitination of the glycoprotein LP.  相似文献   

2.
The prototype foamy virus (PFV) glycoprotein, which is essential for PFV particle release, displays a highly unusual biosynthesis, resulting in posttranslational cleavage of the precursor protein into three particle-associated subunits, i.e., leader peptide (LP), surface (SU), and transmembrane (TM). Glycosidase digestion of metabolically labeled PFV particles revealed the presence of N-linked carbohydrates on all subunits. The differential sensitivity to specific glycosidases indicated that all oligosaccharides on LP and TM are of the high-mannose or hybrid type, whereas most of those attached to SU, which contribute to about 50% of its molecular weight, are of the complex type. Individual inactivation of all 15 potential N-glycosylation sites in PFV Env demonstrated that 14 are used, i.e., 1 out of 2 in LP, 10 in SU, and 3 in TM. Analysis of the individual altered glycoproteins revealed defects in intracellular processing, support of particle release, and infectivity for three mutants, having the evolutionarily conserved glycosylation sites N8 in SU or N13 and N15 in the cysteine-rich central "sheets-and-loops" region of TM inactivated. Examination of alternative mutants with mutations affecting glycosylation or surrounding sequences at these sites indicated that inhibition of glycosylation at N8 and N13 most likely is responsible for the observed replication defects, whereas for N15 surrounding sequences seem to contribute to a temperature-sensitive phenotype. Taken together these data demonstrate that PFV Env and in particular the SU subunit are heavily N glycosylated and suggest that although most carbohydrates are dispensable individually, some evolutionarily conserved sites are important for normal Env function of FV isolates from different species.  相似文献   

3.
Ebola virus infection causes severe hemorrhagic fever in human and non-human primates with high mortality. Viral entry/infection is initiated by binding of glycoprotein GP protein on Ebola virion to host cells, followed by fusion of virus-cell membrane also mediated by GP. Using an human immunodeficiency virus (HIV)-based pseudotyping system, the roles of 41 Ebola GP1 residues in the receptor-binding domain in viral entry were studied by alanine scanning substitutions. We identified that four residues appear to be involved in protein folding/structure and four residues are important for viral entry. An improved entry interference assay was developed and used to study the role of these residues that are important for viral entry. It was found that R64 and K95 are involved in receptor binding. In contrast, some residues such as I170 are important for viral entry, but do not play a major role in receptor binding as indicated by entry interference assay and/or protein binding data, suggesting that these residues are involved in post-binding steps of viral entry. Furthermore, our results also suggested that Ebola and Marburg viruses share a common cellular molecule for entry.  相似文献   

4.
Foamy viruses (FV) are unusual among retroviruses since they require both Gag and Env structural proteins for particle egress. Recently significant progress has been made towards the mechanistic understanding of the viral release process, in particular that of retroviruses, and the viral domains and cellular pathways involved. However little is currently known about domains of FV structural proteins and cellular proteins engaged in this process. By mutational analysis of sequence motifs in prototype FV (PFV) Gag, bearing homology to known late assembly (L) domains, a PSAP motif with L domain function that was functionally interchangeable by heterologous L domains was identified. In contrast the inactivation of a PPPI motif had no significant influence on PFV particle release, although mutant viral particles displayed reduced infectivity. Similarly mutation of an evolutionary conserved YXXL motif revealed no classical L-domain function but resulted in release of noninfectious viruslike particles. Biochemical and electron microscopy analysis demonstrated that these mutant particles incorporated all viral structural proteins but contained aberrantly capsid structures, suggesting a role in capsid assembly for this PFV Gag sequence motif. In line with the mutational analysis, overexpression of dominant negative (DN) mutants and wild-type TSG101 but not the DN mutant of AIP-1/ALIX reduced PFV particle release and infectivity. Furthermore, DN mutants of Vps4A, Vps4B, and CHMP3 inhibited PFV egress and infectivity. Taken together these results demonstrate that PFV, like other viruses, requires components of the vacuolar protein sorting (VPS) machinery for egress and enters the VPS pathway through interaction with TSG101.  相似文献   

5.
Arenaviruses cause acute hemorrhagic fevers with high mortality. Entry of the virus into the host cell is mediated by the viral envelope glycoprotein, GPC. In contrast to other class I viral envelope glycoproteins, the mature GPC complex contains a cleaved stable signal peptide (SSP) in addition to the canonical receptor-binding (G1) and transmembrane fusion (G2) subunits. SSP is critical for intracellular transport of the GPC complex to the cell surface and for its membrane-fusion activity. Previous studies have suggested that SSP is retained in GPC through interaction with a zinc-binding domain (ZBD) in the cytoplasmic tail of G2. Here we used NMR spectroscopy to determine the structure of Junín virus (JUNV) ZBD (G2 residues 445-485) and investigate its interaction with a conserved Cys residue (Cys-57) in SSP. We show that JUNV ZBD displays a novel fold containing two zinc ions. One zinc ion is coordinated by His-447, His-449, Cys-455, and His-485. The second zinc ion is coordinated by His-459, Cys-467, and Cys-469 and readily accepts Cys-57 from SSP as the fourth ligand. Our studies describe the structural basis for retention of the unique SSP subunit and suggest a mechanism whereby SSP is positioned in the GPC complex to modulate pH-dependent membrane fusion.  相似文献   

6.
Glycoproteins of several viruses have the capacity to induce release of noninfectious, capsidless particulate structures containing only the viral glycoprotein. Such structures are often called subviral particles (SVP). Foamy viruses (FVs), a special type of retroviruses with a replication strategy combining features of both orthoretroviruses and hepadnaviruses, express a glycoprotein (Env) which has the ability to induce SVP release. However, unlike human hepatitis B virus, prototype FV (PFV) naturally secretes only small amounts of SVPs, because ubiquitination of the Env protein seems to suppress the intrinsic capacity for induction of SVP release. In this study, we characterized the structural determinants influencing PFV SVP release, examined the role of specific Env ubiquitination sites in the regulation of this process, and analyzed the requirement of the cellular vacuolar protein sorting (VPS) machinery for SVP egress. We observed that the cytoplasmic and membrane-spanning domains of both the leader peptide (LP) and the transmembrane (TM) subunit harbor essential as well as inhibitory domains. Furthermore, only ubiquitination at the most N-terminal lysine residues (K14 and K15) in LP reduced cell surface expression and suppressed SVP release to wild-type levels. This suggests that interaction of Env with cellular components required for SVP release suppression is effective only when Env is ubiquitinated at these lysine residues but not at others. Finally, SVP release was sensitive to dominant-negative mutants of late components, but not early components, of the cellular VPS machinery. PFV therefore differs from hepatitis B virus in using the same cellular pathway for egress of both virions and SVPs.  相似文献   

7.
The carboxyl-terminal region of diphtheria toxin (DT) has been analysed in order to determine regions of receptor recognition. Biochemical cleavage of the toxin with hydroxylamine (HA) was used to generate the peptides HA9DT (residues 454–535), HA6DT (residues 482–535), and HA3DT (residues 454–461). Characterization of HA6DT demonstrated that the final 54 amino acids of DT are sufficient to constitute the receptor-binding domain of the toxin. Within HA9DT, the region encompassing HA3DT and containing the highly cationic polyphosphate-binding site did not contribute to the binding ability of HA6DT. Consistent with this observation, HA3DT itself did not compete for binding of radiolabelled DT to Vero cells. A 30-amino acid synthetic peptide composed of residues 506–535 did not block receptor binding of DT, indicating that residues toward the amino-terminus of HA6DT, or the entire HA6DT region, are required for receptor recognition.  相似文献   

8.
Foamy virus infection induces cytopathology in several cell types from different species. But the exact mechanism is still unknown. In this study, we have investigated the mechanism of cell death induced by prototype foamy virus (PFV) infection in baby hamster kidney (BHK 21) cell lines. PFV induces apoptosis by exhibiting morphological alterations such as chromatin condensation, blebbing, and nuclear fragmentation. In addition, PFV infection causes chromosomal DNA fragmentation, up-regulation of Bax, and activation of caspase-3, but not caspase-8. Up-regulation of Bax initiates the translocation of cytochrome-c from mitochondria to the cytoplasm, suggesting predominantly to the mitochondrial-mediated pathway. Blocking apoptosis using caspase inhibitors increased PFV-infected BHK 21 cell viability. Although blocking apoptosis resulted in reduced progeny release, maximal accumulation of PFV was found in apoptosis-blocked cells. This report provides the first experimental evidence of apoptosis induced by PFV infection, which will provide valuable insights for foamy viral pathology.  相似文献   

9.
Establishment of the stable provirus is an essential step in retroviral replication, orchestrated by integrase (IN), a virus-derived enzyme. Until now, available structural information was limited to the INs of human immunodeficiency virus type 1 (HIV-1), avian sarcoma virus (ASV) and their close orthologs from the Lentivirus and Alpharetrovirus genera. Here, we characterized the in vitro activity of the prototype foamy virus (PFV) IN from the Spumavirus genus and determined the three-dimensional structure of its catalytic core domain (CCD). Recombinant PFV IN displayed robust and almost exclusively concerted integration activity in vitro utilizing donor DNA substrates as short as 16 bp, underscoring its significance as a model for detailed structural studies. Comparison of the HIV-1, ASV and PFV CCD structures highlighted both conserved as well as unique structural features such as organization of the active site and the putative host factor binding face. Despite possessing very limited sequence identity to its HIV counterpart, PFV IN was sensitive to HIV IN strand transfer inhibitors, suggesting that this class of inhibitors target the most conserved features of retroviral IN-DNA complexes.  相似文献   

10.
Herpes simplex virus (HSV) entry is dependent on the interaction of virion glycoprotein D (gD) with one of several cellular receptors. We previously showed that gD binds specifically to two structurally dissimilar receptors, HveA and HveC. We have continued our studies by using (i) a panel of baculovirus-produced gD molecules with various C-terminal truncations and (ii) a series of gD mutants with nonoverlapping 3-amino-acid deletions between residues 222 and 254. Binding of the potent neutralizing monoclonal antibody (MAb) DL11 (group Ib) was unaffected in forms of gD containing residues 1 to 250 but was greatly diminished in molecules truncated at residue 240 or 234. Both receptor binding and blocking of HSV infection were also affected by these C-terminal truncations. gD-1(234t) bound weakly to both HveA and HveC as determined by enzyme-linked immunosorbent assay (ELISA) and failed to block infection. Interestingly, gD-1(240t) bound well to both receptors but blocked infection poorly, indicating that receptor binding as measured by ELISA is not the only gD function required for blocking. Optical biosensor studies showed that while gD-1(240t) bound HveC with an affinity similar to that of gD-1(306t), the rates of complex formation and dissociation were significantly faster than for gD-1(306t). Complementation analysis showed that any 3-amino-acid deletion between residues 222 and 251 of gD resulted in a nonfunctional protein. Among this set of proteins, three had lost DL11 reactivity (those with deletions between residues 222 and 230). One of these proteins (deletion 222-224) was expressed as a soluble form in the baculovirus system. This protein did not react with DL11, bound to both HveA and HveC poorly as shown by ELISA, and failed to block HSV infection. Since this protein was bound by several other MAbs that recognize discontinuous epitopes, we conclude that residues 222 to 224 are critical for gD function. We propose that the potent virus-neutralizing activity of DL11 (and other group Ib MAbs) likely reflects an overlap between its epitope and a receptor-binding domain of gD.  相似文献   

11.
Dengue virus (DV) is a flavivirus and its urban transmission is maintained largely by its mosquito vectors and vertebrate host, often human. In this study, investigation was carried out on the involvement of domain III of the envelope (E) glycosylated protein of dengue virus serotypes 1 and 2 (DV-1 and DV-2 DIII) in binding to host cell surfaces, thus mediating virus entry. Domain III protein of flavivirus can also serve as an attractive target in inhibiting virus entry. The respective DV DIII proteins were expressed as soluble recombinant fusion proteins before purification through enzymatic cleavage and affinity purification. The purified recombinant DV-1 and DV-2 DIII proteins both demonstrated the ability to inhibit the entry of DV-1 and DV-2 into HepG2 cells and C6/36 mosquito cells. As such, the DV DIII protein is indeed important for the interaction with cellular receptors in both human and mosquito cells. In addition, this protein induced antibodies that completely neutralized homologous dengue serotypes although not with the same efficiency among the heterologous serotypes. This observation may be of importance when formulating a generic vaccine that is effective against all dengue virus serotypes.  相似文献   

12.
We previously reported that truncation of the cytoplasmic domain of the macaque simian immunodeficiency virus SIVmac239 envelope glycoprotein enhanced its ability to induce cell fusion in a variety of cell lines. In the present study, we examined the expression of the full-length and truncated SIVmac239 envelope glycoprotein complex on cell surfaces. Using a membrane-impermeable reagent to biotinylate proteins on cell surfaces followed by immunoprecipitation, we found that under conditions in which the full-length TM protein could not be detected on the surfaces of CD4-positive or CD4-negative cell lines, the truncated TM protein was detected efficiently. In contrast, using a membrane-impermeable iodination reagent to label proteins on cell surfaces, we could detect both the full-length and truncated TM proteins. No difference between the full-length and truncated proteins was observed in the detection of the SU proteins in the biotinylation assay. Additionally, we used an assay in which SIV-specific antibodies are prebound to the native envelope proteins expressed on the cell surface and then the proteins are immunoprecipitated. Using this assay, we could not detect the truncated or full-length TM protein on the cell surface, whereas we could detect the SU subunits of both proteins. We also observed that the truncated TM protein formed more stable sodium dodecyl sulfate-resistant oligomers than the full-length TM protein did. These results indicate that truncation of the cytoplasmic domain of the SIVmac239 envelope glycoprotein affects the conformation of the external domain of the TM protein on the cell surface, even though the two proteins have no differences in the amino acid sequences of their external domains. This altered conformation could play a role in the enhanced fusion activity of the truncated SIV glycoprotein.  相似文献   

13.
Retrovirus entry into cells is mediated by the viral envelope glycoproteins which, through a cascade of conformational changes, orchestrate fusion of the viral and cellular membranes. In the absence of membrane fusion, viral entry into the host cell cannot occur. For human T-cell leukemia virus type 1 (HTLV-1), synthetic peptides that mimic a carboxy-terminal region of the transmembrane glycoprotein (TM) ectodomain are potent inhibitors of membrane fusion and virus entry. Here, we demonstrate that this class of inhibitor targets a fusion-active structure of HTLV-1 envelope. In particular, the peptides bind specifically to a core coiled-coil domain of envelope, and peptide variants that fail to bind the coiled-coil lack inhibitory activity. Our data indicate that the inhibitory peptides likely function by disrupting the formation of a trimer-of-hairpins structure that is required for membrane fusion. Importantly, we also show that peptides exhibiting dramatically increased potency can be readily obtained. We suggest that peptides or peptide mimetics targeting the fusion-active structures of envelope may be of therapeutic value in the treatment of HTLV-1 infections.  相似文献   

14.
B Levine  H H Jiang  L Kleeman    G Yang 《Journal of virology》1996,70(2):1255-1260
The cytoplasmic domain of the E2 envelope glycoprotein is important in Sindbis virus assembly, but little is known about its role in the pathogenesis of Sindbis virus encephalitis. To investigate its role in viral pathogenesis, we constructed six recombinant viruses containing site mutations in the E2 cytoplasmic domain, using the neurovirulent background strain, TE12. Our findings demonstrate that the E2 cytoplasmic domain is a determinant of Sindbis virus growth and neurovirulence in suckling mice as well as persistent infection in weanling scid mice. They also suggest that the tyrosine, serine, or threonine residues are not essential for replication in mouse brain or anti-E2 monoclonal antibody-mediated restriction of Sindbis virus replication.  相似文献   

15.
Epstein-Barr virus (EBV) infection of B cells is associated with lymphoma and other human cancers. EBV infection is initiated by the binding of the viral envelope glycoprotein (gp350) to the cell surface receptor CR2. We determined the X-ray structure of the highly glycosylated gp350 and defined the CR2 binding site on gp350. Polyglycans shield all but one surface of the gp350 polypeptide, and we demonstrate that this glycan-free surface is the receptor-binding site. Deglycosylated gp350 bound CR2 similarly to the glycosylated form, suggesting that glycosylation is not important for receptor binding. Structure-guided mutagenesis of the glycan-free surface disrupted receptor binding as well as binding by a gp350 monoclonal antibody, a known inhibitor of virus-receptor interactions. These results provide structural information for developing drugs and vaccines to prevent infection by EBV and related viruses.  相似文献   

16.
Shang L  Yue L  Hunter E 《Journal of virology》2008,82(11):5417-5428
The membrane-spanning domain (MSD) of the human immunodeficiency virus type 1 (HIV-1) gp41 glycoprotein is critical for its biological activity. Previous C-terminal truncation studies have predicted an almost invariant core structure of 12 amino acid residues flanked by basic amino acids in the HIV-1 MSD that function to anchor the glycoprotein in the lipid bilayer. To further understand the role of specific amino acids within the MSD core, we initially replaced the core region with 12 leucine residues and then constructed recovery-of-function mutants in which specific amino acid residues (including a GGXXG motif) were reintroduced. We show here that conservation of the MSD core sequence is not required for normal expression, processing, intracellular transport, and incorporation into virions of the envelope glycoprotein (Env). However, the amino acid composition of the MSD core does influence the ability of Env to mediate cell-cell fusion and plays a critical role in the infectivity of HIV-1. Replacement of conserved amino acid residues with leucine blocked virus-to-cell fusion and subsequent viral entry into target cells. This restriction could not be released by C-terminal truncation of the gp41 glycoprotein. These studies imply that the highly conserved core residues of the HIV Env MSD, in addition to serving as a membrane anchor, play an important role in mediating membrane fusion during viral entry.  相似文献   

17.
FeLV-FAIDS, an immunodeficiency-inducing isolate of feline leukemia virus, is composed of a pathogenic but replication-defective genome (molecular clone 61C) and a replication-competent but non-immunodeficiency-inducing variant genome (molecular clone 61E). The chimeric virus EECC, composed of the 5' gag-pol of 61E fused to the env-3' LTR of 61C, also induces immunodeficiency. The 61C (or EECC) gp80 can be distinguished from that of 61E on the basis of antigenic recognition, size, and rate of posttranslational processing. We found that the nascent precursor polypeptides of the two viruses were the same size; however, the 61E gp80 rapidly shifted to a smaller size and was subsequently cleaved to gp70, whereas EECC gp80 maintained its nascent size and was cleaved to gp70 only after a prolonged time. Endo-beta-N-acetyl glucosaminidase H and N-glycanase digestions of newly formed glycoproteins resulted in a similar banding pattern for both viruses, indicating that both contained the same number of oligosaccharide side chains and that all of these were high mannose sugars. The metabolic inhibitors of glycosylation, castanospermine or N-methyldeoxynojirimycin, prevented both the rapid trimming of 61E gp80 and its cleavage to gp70. Treatment with mannosidase inhibitors, however, did not affect 61E gp80 processing or size, suggesting that retention of glucose residues on EECC was responsible for these distinguishing properties of the glycoprotein. The pathological consequence of aberrant viral glycoprotein processing was evaluated in feline 3201 T lymphocytes, which are infectable by both 61E and EECC but are killed only by EECC. As in fibroblasts, the EECC glycoprotein produced in lymphocytes was larger, antigenically distinct, and processed more slowly than was the glycoprotein of 61E. Castanospermine treatment of 61E-infected 3201 T cells, however, not only abrogated the antigenic differences between the 61E and EECC glycoproteins but also resulted in a cytopathic effect. Our results suggest that (i) intracellular accumulation of EECC envelope glycoprotein may occur consequent to retention of glucose residues on carbohydrate side chains and (ii) a strong correlation exists between delayed glycoprotein processing and cytopathicity in FeLV-FAIDS-infected T lymphocytes.  相似文献   

18.
19.
Foamy viruses (FVs) are highly fusogenic, and their replication induces massive syncytium formation in infected cell cultures which is believed to be mediated by expression of the envelope (Env) protein. The FV Env is essential for virus particle egress. The unusually long putative membrane-spanning domain (MSD) of the transmembrane subunit carries dispersed charged amino acids and has an important function for particle envelopment. To better understand the capsid-envelope interaction and Env-mediated cell fusion, we generated a variety of FV MSD mutations. C-terminal deletions revealed the cytoplasmic domain to be dispensable but the full-length MSD to be required for fusogenic activity. The N-terminal 15 amino acids of the MSD were found to be sufficient for membrane anchorage and promotion of FV particle release. Expression of wild-type Env protein rarely induced syncytia due to intracellular retention. Coexpression with FV Gag-Pol resulted in particle export and a dramatic increase in fusion activity. A nonconservative mutation of K(959) in the middle of the putative MSD resulted in increased fusogenic activity of Env in the absence of Gag-Pol due to enhanced cell surface expression as well as structural changes in the mutant proteins. Coexpression with Gag-Pol resulted in a further increase in the fusion activity of mutant FV Env proteins. Our results suggest that an interaction between the viral capsid and Env is required for FV-induced giant-cell formation and that the positive charge in the MSD is an important determinant controlling intracellular transport and fusogenic activity of the FV Env protein.  相似文献   

20.
Ye L  Bu Z  Vzorov A  Taylor D  Compans RW  Yang C 《Journal of virology》2004,78(24):13409-13419
The effects of two functional domains, the membrane-proximal YXXPhi motif and the membrane-distal inhibitory sequence in the long cytoplasmic tail of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env), on immunogenicity of the envelope protein were investigated. Genes with codons optimized for mammalian expression were synthesized for the HIV 89.6 Env and a truncated Env with 50 amino acids in the cytoplasmic domain to delete the membrane distal inhibitory sequence for surface expression. Additional genes were generated in which the tyrosine residue in the YXXPhi motif was changed into a serine. Pulse-chase radioactive labeling and immunoprecipitation studies indicated that both domains can mediate endocytosis of the HIV Env, and removal of both domains is required to enhance HIV Env protein surface stability. Analysis of immune responses induced by DNA immunization of mice showed that the DNA construct for the mutant Env exhibiting enhanced surface stability induced significantly higher levels of antibody responses against the HIV Env protein. Our results suggest that the HIV Env cytoplasmic domain may play important roles in virus infection and pathogenesis by modulating its immunogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号