首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The susceptibility of representative pyrethroid (cypermethrin, deltamethrin, lambdacyhalothrin, bifenthrin), organophosphate (chlorpyriphos, triazophos, profenophos) and new chemistry insecticides (spinosad, indoxacarb and emamectin) was investigated for 18 field populations of Plutella xylostella (Linnaeus) from three different zones in Pakistan. The LC(50) (mg ml(-1); 48 h) values of pyrethroids for various populations ranged from 0.19-1.88 for cypermethrin, 0.31-2.64 for deltamethrin, 0.08-1.16 for lambdacyhalothrin and 0.07-0.88 for bifenthrin. The LC(50) (mg ml(-1); 48 h) of organophosphates ranged from 0.52-5.67 for chlorpyriphos, 0.37-4.14 for triazophos and 0.03-2.65 for profenophos. The most probable reason for low toxicity of organophosphates and pyrethroids is the evolution of multiple resistance mechanisms; however, further studies are required to establish these mechanisms. When these same products were tested against a susceptible laboratory population (Lab-Pak), the new chemistry compounds were significantly more toxic than pyrethroids and organophosphates. The results are discussed in relation to integrated pest management and insecticide resistance management strategies for P. xylostella.  相似文献   

2.
In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95 > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock‐down‐resistant (kdr) mutants in the voltage‐gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione‐S‐transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95, increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.  相似文献   

3.
Helicoverpa armigera (Hübner) populations from West Africa recently developed resistance to pyrethroid insecticides through enhanced metabolism by mixed-function oxidases. The combination index method was used to study the synergism of pyrethroids by organophosphorus insecticides. Several mixtures of insecticides currently registered to control cotton pest complex in West Africa were tested, including: cypermethrin/ethion, cypermethrin/profenofos, deltamethrin/ triazophos, deltamethrin/chlorpyriphos, cyfluthrin/chlorpyriphos, and betacyfluthrin/chlorpyriphos. In the resistant strain, the organophosphorus insecticides significantly increased the toxicity of pyrethroids suppressing the resistance effect, either by additive or synergistic effects. Significant synergism was shown for the following mixtures: cypermethrin/ethion, deltamethrin/triazophos, and deltamethrin/chlorpyriphos. The use of synergism from these insecticide mixtures should prove to be an additional tool in the overall resistance management strategy because the pyrethroid resistance in H. armigera from West Africa is not yet stable, decreasing between cotton seasons and increasing with treatments. In absence of selection, the susceptibility of H. armigera to insecticides should be restored.  相似文献   

4.
The susceptibility of six Australian broiler house populations and an insecticide susceptible population of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), to cyfluthrin, beta-cyfluthrin, gamma-cyhalothrin, and deltamethrin was investigated. One broiler house population had equivalent susceptibility to the susceptible to beta-cyfluthrin and beta-cyhalothrin, with higher susceptibility to cyfluthrin and deltamethrin. The remaining five populations demonstrated strong resistance to cyfluthrin (19-37-fold), the insecticide used most widely for management of A. diaperinus in Australia. Each cyfluthrin-resistant population demonstrated reduced susceptibility to beta-cyfluthrin (resistance ratios were 8-17-fold), deltamethrin (2.5-8-fold), and gamma-cyhalothrin (6-12-fold) compared with the laboratory population, but cross-resistance patterns varied considerably between populations. Adding piperonyl butoxide (PBO) had no effect on the susceptibility of the susceptible population to any of the insecticides, but it increased the susceptibility of each of the five cyfluthrin-resistant populations: to cyfluthrin (synergism ratio range, 1.9-5.0-fold), beta-cyfluthrin (1.6-4.1-fold), and y-cyhalothrin (1.7-2.0-fold). PBO had a more variable effect on susceptibility to deltamethrin, with three of the cyfluthrin-resistant populations being more susceptible to deltamethrin in the presence of PBO, but susceptibility of the remaining two populations was unaffected by adding PBO (synergism ratio range, 0.9-2.5-fold). Overall, the addition of PBO to the four pyrethroids had variable effects on their susceptibility. This variability indicated the presence of other resistance mechanisms in beetle populations apart from metabolic resistance. In addition, the relative importance of metabolic resistance in each beetle population varied widely between pyrethroids. Thus, it cannot be assumed that PBO will reliably synergize pyrethroids against cyfluthrin-resistant lesser mealworm populations when using it to mitigate insecticide resistance.  相似文献   

5.
Rhipicephalus (Boophilus) microplus is an economically important ectoparasite of cattle. Chemical acaricides remain the most practical method for control of these pests. During past two decades there have been increasing reports of resistance development against synthetic pyrethroids in tick populations of this species throughout the world. A study was conducted to determine the level of susceptibility of R. (B.) microplus to deltamethrin collected from different geographical locations of northern India. LPT bioassay results revealed LC(50) values of deltamethrin ranging from 0.035 to 0.00037?% A.I. Esterase profile of the tick larval extracts using native PAGE, revealed 5 bands of esterase activity designated EST-5 to EST-1A. Inhibitory tests recognized EST-1, EST-2 and EST-3 as Acetylcholinesterases (AchEs), EST-4 and EST-5 as Carboxylesterases (CaEs). The band intensity varied between tick populations of various locations, being more intense in case of the resistant populations. An extra band of esterase activity (EST-1A) was obtained in larval extracts of ticks from 3 locations. This increased esterase activity may be involved in the resistance development in these tick populations. Acaricide resistance is a multi-factorial phenomenon, thus other causes of increased resistance like sodium channel mutation and reduced drug penetration (e.g. cuticle thickening) and behavioural changes (e.g. avoiding the pesticides) are to be tested in future in order to confirm the basic cause of the resistance development in these acaricide resistant tick populations.  相似文献   

6.
The multi host tick, Hyalomma anatolicum, is the commonest Hyalomma species in India and cattle serves as the main host of this species. A study to evaluate the acaricide resistance of H. anatolicum to deltamethrin, cypermethrin and diazinon was conducted in 20 areas located in three agro climatic regions known to have abundance of the species. Results obtained by the “larval packet test” (LPT) showed a low grade resistance (level-I, RF?<5) in the tick species to both deltamethrin and cypermethrin in 10 areas and higher grade resistance (level-II, RF?<25) to deltamethrin in one area, where intensive use of synthetic pyrethroids are practiced for tick control. Low grade resistance to diazinon (level I) was recorded in six areas where organophosphates compounds are extensively used for agricultural practices allowing increased exposure of the moulting instars of the ticks to these chemicals. Biochemical analysis of the samples suggested involvement of esterase and alterations of acetylcholinesterase in the resistance mechanisms.  相似文献   

7.
The toxicity of some of the most commonly used insecticides in the organophosphate and pyrethroid classes were investigated against different Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) populations collected over three consecutive years (2005-2007). The populations were tested using leaf dip bioassays for residual effects and topical applications to measure the response of larvae that would come into direct contact with field application of insecticides. In leaf dip assays, the LC50 (micrograms per milliliter; 120 h) values for chlorpyrifos and profenofos were in the range of 59.3-1,023 and 180.02-1,118 respectively. The LC50 values for lambda-cyhalthrin, alphamethrin, and deltamethrin were 359.08-2,677, 112.9-923.5, and 47.81-407.03, respectively. The toxicity for the above insecticides in topical application was similar to toxicity in leaf dip assays. The susceptibility of a laboratory population, which was locally developed and designated as (Lab-PK), to deltamethrin was comparable with another susceptible laboratory population. Resistance ratios for five field populations were generally low to medium for deltamethrin, but high to very high for chlorpyrifos, profenofos, lambda-cyhalthrin and alphamethrin compared with the Lab-PK population. Our data also suggested that the five field populations had multiple resistance to two classes of insecticides. The populations showed resistance to two organophosphates tested and to lambda-cyhalthrin and alphamethrin; however, resistance to deltamethrin was only found at two locations. This pattern indicates occurrence of two divergent patterns of resistance within pyrethroids. The resistance to the insecticides was stable across 3 yr, suggesting field selection for general fitness had also taken place in various populations of C. carnea. The broad spectrum of resistance and stability of resistance to insecticides in C. carnea in the current study suggested that it could be a prime candidate for mass releases and compatible with most spray programs.  相似文献   

8.
The last 50 years of research into infections in Australia and New Zealand caused by larvae of the sheep blowfly, Lucilia cuprina, have significantly advanced our understanding of this blowfly and its primary host, the sheep. However, apart from some highly effective drugs it could be argued that no new control methodologies have resulted. This review addresses the major areas of sheep blowfly research over this period describing the significant outcomes and analyses, and what is still required to produce new commercial control technologies. The use of drugs against this fly species has been very successful but resistance has developed to almost all current compounds. Integrated pest management is becoming basic to control, especially in the absence of mulesing, and has clearly benefited from computer-aided technologies. Biological control has more challenges but natural and perhaps transformed biopesticides offer possibilities for the future. Experimental vaccines have been developed but require further analysis of antigens and formulations to boost protection. Genetic technologies may provide potential for long-term control through more rapid indirect selection of sheep less prone to flystrike. Finally in the future, genetic analysis of the fly may allow suppression and perhaps eradication of blowfly populations or identification of new and more viable targets for drug and vaccine intervention. Clearly all these areas of research offer potential new controls but commercial development is perhaps inhibited by the success of current chemical insecticides and certainly requires a significant additional injection of resources.  相似文献   

9.
本文以电生理技术研究了四个品系的家蝇Musca domestica vicina Macq.中枢神经系统(CNS)对DDT、二氯苯醚菊酯和澳氰菊酯的敏感性,结果表明:三种抗性家蝇,DDT高抗品系(DDT-R)、二氯苯醚菊酯高抗品系(2C1-R)和溴氰菊酯高抗品系(Dec-R)的中枢神经系统(CNS)对三种杀虫剂的敏感性与敏感家蝇相比均明显降低,而且,GNS的不敏感性随杀虫剂LD50的升高有逐渐上升的趋势.我们认为,CNS不敏感性是家蝇对DDT相拟除虫菊酯产生抗性的一个重要机制,也是产生交互抗性的一个重要原因.  相似文献   

10.
Insecticide resistance in the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae),has been demonstrated previously, but mostly with insecticides that are no longer used, such as the organochlorines. Resistance to commonly used pyrethroids has been evaluated twice, but only in the midwestern United States. Stable fly susceptibility to a commonly used pyrethroid, permethrin, was determined in Florida to assess the possibility of resistance development. Diagnostic concentration evaluations of three stable fly field strains demonstrated a maximum of 57 and 21% survival to permethrin residues of 3x and 10x the LC99 of a susceptible strain, respectively. Stable flies from an equine facility with no reported insecticide use demonstrated approximately 20% survival with a 3x diagnostic concentration. Despite a distance of 91-km between field collection sites, survival profiles of field-collected stable fly strains were similar. Although an established stable fly colony collected from a local dairy previously expressed low level resistance to permethrin residues, five generations of laboratory permethrin selection increased resistance 15-fold.  相似文献   

11.
Bioassays were developed in Zimbabwe to measure pyrethroid in cattle dung. These and chemical assays then estimated concentrations in dung from treated oxen and elucidated risks to dung fauna. Laboratory bioassays with adult beetles (Histeridae and Scarabaeinae, including Copris, Digitonthophagus, Onitis and Sisyphus spp.) and muscoid larvae (Musca lusoria Wiedemann) indicated that the LC50 of pyrethroids, as ppm in the wet weight, averaged 0.04 for deltamethrin pour-on, 0.25 for deltamethrin dip, 0.22 for alphacypermthrin pour-on, 0.10 for cyfluthrin pour-on, 0.23 for cypermethrin dip and 0.63 for flumethrin dip. Field bioassays involved artificial dung pats of 800 g, deployed in woodland and inspected after 24 h to record insects dead and alive. Beetles were most abundant in the wet season. Muscoid larvae were less seasonal. The LC50 of insecticides in the field confirmed laboratory indications. Adult Diptera (muscoids and Sgifidae) were not repelled or killed until the deltamethrin concentration reached 10 ppm. Pat dispersal by dung fauna and termites (Microtermes spp.) was halved by deltamethrin at 0.1-1 ppm. Scavenging of dead beetles by ants was greatest with small beetles (< 15 mm long) uncontaminated with insecticide. Dips and pour-ons of deltamethrin on cattle gave residues of about 0.01-0.1 ppm in dung produced in the fortnight after application. About 1.6% of the deltamethrin applied was transferred to dung. Deltamethrin and alphacypermethrin in dung showed no detectable degradation in 64 days. Contamination levels threaten populations of slow-breeding beetles.  相似文献   

12.
Our previous microdialysis study of freely moving rats demonstrated that 3 pyrethroids, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) differentially modulate acetylcholine (ACh) release in the hippocampus. To better understand the mechanisms of their modulatory effects and also other effects on the cholinergic system in the brain, the activities of ACh hydrolyzing enzyme acetylcholinesterase (AChE), ACh synthesizing enzyme choline acetyltransferase (ChAT) and ACh synthesizing rate-limiting step, high-affinity choline uptake (HACU) were examined in the present study. The pyrethroids studied had no effect on AChE activity in the cortex, hippocampus and striatum. These pyrethroids had no significant effect on ChAT in the cortex and hippocampus, but striatal ChAT was increased at higher dosage (60 mg/kg) by all three compounds. Lineweaver-Burk analysis of hippocampal HACU revealed that the pyrethroids did not alter the Michaelis-Menten constant (Km) value but caused alteration of maximal velocity (Vmax). Allethrin (60 mg/kg) and cyhalothrin (20 and 60 mg/kg) decreased while deltamethrin (60 mg/kg) increased the Vmax for HACU. In vitro study showed that at higher concentrations (> or = 10(-) (6) M) allethrin and cyhalothrin reduced the hippocampal HACU but deltamethrin increased it. These results suggest that mechanisms of ACh synthesis are involved in the modulatory effects of the pyrethroids on ACh release and other cholinergic activities.  相似文献   

13.
Information on the insecticide resistance profiles of Aedes aegypti in Indonesia is fragmentary because of the lack of wide-area insecticide resistance surveillance. We collected Ae. aegypti from 32 districts and regencies in 27 Indonesian provinces and used WHO bioassays to evaluate their resistance to deltamethrin, permethrin, bendiocarb, and pirimiphos-methyl. To determine the possible resistance mechanisms of Ae. aegypti, synergism tests were conducted using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioates (DEF). The Ae. aegypti from all locations exhibited various levels of resistance to pyrethroids. Their resistance ratio (RR50) to permethrin and deltamethrin ranged from 4.08× to 127× and from 4.37× to 72.20×, respectively. In contrast with the findings of other studies, most strains from the highly urbanized cities on the island of Java (i.e., Banten, Jakarta, Bandung, Semarang, Yogyakarta, and Surabaya) exhibited low to moderate resistance to pyrethroids. By contrast, the strains collected from the less populated Kalimantan region exhibited very high resistance to pyrethroids. The possible reasons are discussed herein. Low levels of resistance to bendiocarb (RR50, 1.24–6.46×) and pirimiphos-methyl (RR50, 1.01–2.70×) were observed in all tested strains, regardless of locality. PBO and DEF synergists significantly increased the susceptibility of Ae. aegypti to permethrin and deltamethrin and reduced their resistance ratio to less than 16×. The synergism tests suggested the major involvement of cytochrome P450 monooxygenases and esterases in conferring pyrethroid resistance. On the basis of our results, we proposed a 6-month rotation of insecticides (deltamethrin + synergists ➝ bendiocarb ➝ permethrin + synergists ➝ pirimiphos-methyl) and the use of an insecticide mixture containing pyrethroid and pyrimiphos-methyl to control Ae. aegypti populations and overcome the challenge of widespread Ae. aegypti resistance to pyrethroid in Indonesia.  相似文献   

14.
The South American tomato pinworm, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is a leafminer species currently considered as one of the major pests of fresh tomatoes around the world. The species settled in north Africa in 2007, before being observed in the entire continent. Widespread insecticide use has led to the emergence of resistant populations in South America and Europe, but no large-scale insecticide resistance assessment has been performed in Sub-Saharan Africa so far. In this study, we collected T. absoluta larvae from locations widely distributed in Burkina Faso, where the pest was first detected in 2016. Acute toxicity of the all available molecules in Burkina Faso was evaluated in the laboratory on F1 individuals, including acetamiprid, abamectin, spinosad, cypermethrin, chlorpyrifos, λ-cyhalothrin, deltamethrin, and Bacillus thuringiensis. No LC50 differences among T. absoluta populations were highlighted, except for Bacillus thuringiensis. Insects were still highly susceptible to abamectin [LC50 < 0.4 mg/L; Control failure likelihood (CFL) = −25%], spinosad (LC50 < 0.6 mg/L; CFL = 25%) and chlorpyrifos-ethyl (LC50 between 254 and 458 mg/L; CFL = −15%), but were less susceptible to acetamiprid (CFL ranging from 72% to 91%), cypermethrin (CFL = 80%), λ-cyhalothrin (CFL =79%), and deltamethrin (CFL ranging from 51% to 66%), with LC50 values for these insecticides ranging between 100 and 525 mg/L. Pending a proper communication strategy, we hope this work could help producers avoiding the most inefficient active substances.  相似文献   

15.
Hughes P. B. (1981) Spectrum of cross-resistance to insecticides in field samples of the primary sheep blowfly, Lucilia cuprina. Internationaljournal for Parasitology11:475–479. Resistance to the organophosphorous (OP) insecticide, diazinon, is due to a major gene on chromosome 4. To examine the spectrum of cross-resistance in field populations of Lucilia cuprina, larvae from 41 field samples were exposed to the susceptible discriminating doses of five insecticides. A comparison of the mortalities produced by diazinon to those caused by the other OPs tested (fenthion-ethyl, chlorfenvinphos and coumaphos) indicates that the diazinon resistance gene may confer cross-resistance to other OPs used for blowfly control. However, two samples were found to be resistant to diazinon but susceptible to coumaphos. The OP resistance gene is present at a high frequency in field populations, with a mean frequency of 0–82. Mortalities produced by the carbamate, butacarb, did not relate to those due to diazinon. It seems that a separate mechanism for carbamate resistance is also present in the field. No indication of resistance was found to the insect growth regulator Vetrazin® in any sample tested.  相似文献   

16.
棉铃虫对拟除虫菊酯抗性稳定性研究   总被引:12,自引:2,他引:12  
吴益东  沈晋良 《昆虫学报》1996,39(4):342-346
研究棉铃虫Helicoverpa armigera (Hubner)对三种拟除虫菊醌(氰戊菊酯、溴氰菊酯、功夫菊酯)的抗性稳定性及敏感性恢复表明,即使棉铃虫对氰戊菊酯的抗性达到3166.3倍以上,抗性仍不稳定,经14代室内饲养后抗性下降为61.4倍;对一系列田间抗性种群的抗性稳定性研究后发现,棉铃虫对这三种拟除虫菊酯的抗性不稳定,在没有杀虫剂选择的情况下,开始几代抗性下降较快,当下降到一定水平(2~9倍)后,抗性比较稳定,很难完全恢复对拟除虫菊酯的敏感性。  相似文献   

17.
用溴氰菊酯选育抗敌百虫淡色库蚊的研究   总被引:2,自引:2,他引:2  
陈文美 《昆虫学报》1990,33(1):14-20
将室内选育成功的抗敌百虫淡色库蚊Culex pipiens pallens Coq.品系(RD)分为二个分系,一个不再用敌百虫处理,称之为RD衰退品系(RD139-x),34代后对敌百虫的敏感度增加了10倍,对溴氰菊酯的敏感度无显著变化.另一分系改用溴氰菊酯选育,命名为Rde品系,53代后对溴氰菊酯抗性达200倍左右,对敌百虫敏感度上升约10倍,对DDT的交互抗性高达118倍,对马拉硫磷、杀螟硫磷的敏感度与敏感品系(SEN,上海昆虫所保存)比较也有上升,呈负交互抗性现象.用高剂量溴氰菊酯处理幼虫、也证明Rde在20分钟内麻痹率比敏感品系低,可见抗性机制主要是抗击倒因子(Kdr).但增效醚(Pb)对溴氰菊酯明显增效,可见mfo酶也起重要作用,推测抗性为多因子遗传.  相似文献   

18.
A susceptible, laboratory strain of bed bug, Cimex lectularius L., was used to determine the efficacy of insecticide products labeled or possessing a site label for bed bug control. Field strain bed bugs also were used to evaluate one insecticide product. The lethal time (LT),, values calculated for the laboratory strain bed bugs indicated that all of the pyrethroid products killed significantly faster than chlorfenapyr (0.5% [AIl; Phantom: BASF; LT50 = 10 d and 9 h). lamda-Cyhalothrin (0.03%; Demand CS; Syngenta) was the fastest acting insecticide (LT50 = 20 min), followed by bifenthrin (0.02% [AI]; Talstar One, FMC; LT50 = 53 min), deltamethrin (0.06% [AI]; Suspend SC; Bayer; LT50 = 61 min), and permethrin (0.05%; Dragnet SFR; FMC; LT50 = 88 min). The field strain bed bugs exposed to deltamethrin had an LT50 value of 14 day 8 h, indicating that the field strain was significantly less susceptible to deltamethrin than the laboratory strain. Chlorfenapyr exposure did not prevent the laboratory strain bed bugs from mating and laying eggs, nor did it prevent the eggs from hatching during the 2-wk exposure period. Surprisingly, none of the insecticides tested, including the pyrethroids, were repellent to laboratory strain bed bugs. Bed bugs rested on pyrethroid-treated panels and remained in contact with the panels until they died (2 h). Chlorfenapyr was also not repellent to bed bugs, but it caused no mortality during the 2-h test period. This study suggests that although pyrethroids were effective for controlling laboratory strain bed bugs, there is the potential for significant resistance in field strains. This study also determined that pyrethroid products were not repellent to bed bugs and would not cause bed bug aggregations to scatter or avoid treated surfaces.  相似文献   

19.
BackgroundVisceral leishmaniasis (VL) is targeted for elimination as a public health problem in Nepal by 2023. For nearly three decades, the core vector control intervention in Nepal has been indoor residual spraying (IRS) with pyrethroids. Considering the long-term use of pyrethroids and the possible development of resistance in the vector Phlebotomus argentipes sand flies, we monitored the susceptibility status of their field populations to the insecticides of different classes, in villages with and without IRS activities in recent years.Methodology/Principal findingsSand flies were collected from villages with and without IRS in five VL endemic districts from August 2019 to November 2020. The WHO susceptibility test procedure was adopted using filter papers impregnated at the discriminating concentrations of insecticides of the following classes: pyrethroids (alpha-cypermethrin 0.05%, deltamethrin 0.05%, and lambda-cyhalothrin 0.05%), carbamates (bendiocarb 0.1%) and organophosphates (malathion 5%). Pyrethroid resistance intensity bioassays with papers impregnated with 5× of the discriminating concentrations, piperonyl butoxide (PBO) synergist-pyrethroid bioassays, and DDT cross-resistance bioassays were also performed. In the IRS villages, the vector sand flies were resistant (mortality rate <90%) to alpha-cypermethrin and possibly resistant (mortality rate 90–97%) to deltamethrin and lambda-cyhalothrin, while susceptibility to these insecticides was variable in the non-IRS villages. The vector was fully susceptible to bendiocarb and malathion in all villages. A delayed knockdown time (KDT50) with pyrethroids was observed in all villages. The pyrethroid resistance intensity was low, and the susceptibility improved at 5× of the discriminating concentrations. Enhanced pyrethroid susceptibility after pre-exposure to PBO and the DDT-pyrethroid cross-resistance were evident.Conclusions/SignificanceOur investigation showed that P. argentipes sand flies have emerged with pyrethroid resistance, suggesting the need to switch to alternative classes of insecticides such as organophosphates for IRS. We strongly recommend the regular and systematic monitoring of insecticide resistance in sand flies to optimize the efficiency of vector control interventions to sustain VL elimination efforts in Nepal.  相似文献   

20.
为探讨溴氰菊酯对烟草粉螟的亚致死效应,本文采用烟叶浸渍法以溴氰菊酯亚致死浓度(LC 10和LC 25)胁迫烟草粉螟3龄幼虫,并通过年龄-龄期两性生命表的方法探究溴氰菊酯胁迫对烟草粉螟发育和繁殖的影响。结果显示:与对照相比,溴氰菊酯LC 10、LC 25处理F 0代的平均单雌产卵量显著下降;LC 25处理F 0代的产卵前期及总产卵前期明显长于对照;LC 25处理与LC 10处理和对照间,F 0代雌、雄虫寿命均差异显著;LC 10处理和LC 25处理F 1代与对照存活率明显下降,F 1代各处理间的卵、1龄幼虫、3龄幼虫、5龄幼虫、7龄幼虫和蛹的发育历期无显著差异;但LC 25处理组2龄、4龄、6龄幼虫历期比对照延长了且差异显著;LC 25处理组的成虫前期比对照组延长了且差异显著。同时LC 25处理的雌、雄虫寿命最短,但3个处理间差异不显著。研究表明,亚致死浓度的溴氰菊酯能够抑制烟草粉螟的生长发育和繁殖,以上研究结果可为田间用药控制烟草粉螟提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号