首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabies virus infection of cultured rat sensory neurons.   总被引:7,自引:4,他引:3       下载免费PDF全文
E Lycke  H Tsiang 《Journal of virology》1987,61(9):2733-2741
The axonal transport of rabies virus (challenge virus strain of fixed virus) was studied in differentiated rat embryonic dorsal root ganglion cells. In addition, we observed the attachment of rabies virus to neuronal extensions and virus production by infected neurons. A compartmentalized cell culture system was used, allowing infection and manipulation of neuronal extensions without exposing the neural soma to the virus. The cultures consisted of 60% large neuronal cells whose extensions exhibited neurofilament structures. Rabies virus demonstrated high binding affinity to unmyelinated neurites, as suggested by assays of virus adsorption and immunofluorescence studies. The rate of axoplasmic transport of virus was 12 to 24 mm/day, including the time required for internalization of the virus into neurites. The virus transport could be blocked by cytochalasin B, vinblastine, and colchicine, none of which negatively affected the production of virus in cells once the infection was established. It was concluded that, for the retrograde transfer of rabies virus by neurites from the periphery to the neuronal soma, the integrity of tubulin- and actin-containing structures is essential. The rat sensory neurons were characterized as permissive, moderately susceptible, but low producers of rabies virus. These neurons were capable of harboring rabies virus for long periods of time and able to release virus into the culture medium without showing any morphological alterations. The involvement of sensory neurons in rabies virus pathogenesis, both in viral transport and as a site for persistent viral infection, is discussed.  相似文献   

2.
The study of neurons in culture would benefit from the development of a gene transduction system capable of delivering foreign genes at high efficiency, as transduction of primary neurons with existing systems is inefficient. The efficacy of lytic vaccinia virus (VV) infection of primary retinal cultures and PC12 cells (a model of neuronal differentiation) was examined in order to determine the efficiency of gene transduction using VV in neuronal primary culture. VV was able to infect retinal cells and PC12 cells and express transgenes of Escherichia coli beta-galactosidase (lacZ) and epithelial fatty acid binding protein (E-FABP) in a virus dose-dependent manner. Most (50-100%) of the retinal cells were positive for transgene protein at multiplicities of infection (MOI) between 10 and 100 plaque-forming units (PFU), while over 50% of VV-infected PC12 cells expressed the virus encoded gene at an MOI = 10. The production of foreign mRNA and protein by VV following infection was verified by PCR and Western blot. Because VV is a lytic virus, cytopathic effects were examined. Retinal cultures maintained for 0.5 days in vitro showed greater than 90% survival at 24 h post-infection, while 14-day cultures were equally viable for 48 h. Retinal ganglion cells and differentiated PC12 cells appear to be more protected against lytic VV infection than proliferating glial and undifferentiated PC12 cells. These data suggest that VV may be a useful vector for delivering foreign genes to neuronal cells with an efficient transient transgene expression.  相似文献   

3.
4.
5.
6.
7.
Although the neural cell adhesion molecule (NCAM) -140 and -180 have been shown to serve as a receptor for rabies virus (RV), it was not known whether the other major isoform of NCAM, GPI-anchored NCAM-120 functions as RV receptor. In this study, we have established HEp-2 cells stably expressing NCAM-120 or NCAM-140, and their susceptibilities to RV infection were compared. The results demonstrated that NCAM-120 served as virus attachment protein; however, the cells expressing NCAM-120 did not support efficient RV replication. Furthermore, the level of IFN-ss mRNA was apparently elevated in NCAM-120 expressing cells but not in NCAM-140 expressing cells, suggesting that GPI-anchored NCAM-120 suppressed RV replication via induction of IFN-ss even though NCAM-120 was able to promote virus penetration into the cells.  相似文献   

8.
Rabies virus glycoprotein (RVG) is known to be the only factor that mediates rabies infection. The neurotrophin receptor (p75NTR), through its cysteine-rich domain 1, is a specific receptor for RVG and neutralizes virus infectivity, but its role in virus infection has remained obscure. We used adult mouse dorsal root ganglion (DRG) neurons as a model to study the role of p75NTR in RV infection of primary neurons. We show that RV infects around 20% of DRG neurons, of which more than 80% are p75NTR positive, have large diameters, and are capsaicin insensitive. Surprisingly, RV binding and infection are absent in about half of the p75NTR-expressing DRG neurons which have small diameters and are often capsaicin sensitive. This indicates that p75NTR is not sufficient to mediate RV interaction in sensory neurons. The rate and specificity of neural infection are unchanged in RV-infected p75NTRExonIV−/− mice that lack all extracellular receptor domains and in wild-type mice infected with two independent RV mutants that lack p75NTR binding. Accordingly, the mortality rate is unchanged in the absence of RV-p75NTR interaction. We conclude that although p75NTR is a receptor for soluble RVG in transfected cells of heterologous expression systems, an RVG-p75NTR interaction is not necessary for RV infection of primary neurons. This means that other receptors are required to mediate RV infection in vivo and in vitro.  相似文献   

9.
Raccoon poxvirus (RCN) recombinants expressing the rabies virus internal structural nucleoprotein (RCN-N) protected A/WySnJ mice against a lethal challenge with street rabies virus (SRV). Maximum survival was achieved following vaccination by tail scratch and footpad (FP) SRV challenge. RCN-N-vaccinated mice inoculated in the FP with SRV were resistant to infection for at least 54 weeks postvaccination. Protection was also elicited by RCN recombinants expressing the rabies virus glycoprotein (RCN-G). Vaccination with RCN-G evoked rabies virus neutralizing antibody. Rabies virus neutralizing antibody was not detected in RCN-N-vaccinated mice prior to or following SRV infection. Radioimmunoprecipitation assays showed that sera from RCN-N-vaccinated mice which survived SRV infection did not contain antibody to SRV structural protein G, M, or NS. The mechanism(s) of N-induced resistance appears to correlate with the failure of peripherally inoculated SRV to enter the central nervous system (CNS). Support for this correlation with resistance was documented by the observations that SRV-inoculated RCN-N-vaccinated mice did not develop clinical signs of CNS rabies virus infection, infectious SRV was not detected in the spinal cord or brain following FP challenge, and all RCN-N-vaccinated mice died following direct intracranial infection of the CNS with SRV. These results suggest that factors other than anti-G neutralizing antibody are important in resistance to rabies virus and that the N protein should be considered for incorporation with the G protein in recombinant vaccines.  相似文献   

10.
11.
12.
Safe and effective vaccination is important for rabies prevention in animals. Although several genetically engineered rabies vaccines have been developed, few have been licensed for use, principally due to biosafety concerns or due to poor efficacy in animal models. In this paper, we describe the construction and characterization of a replication-competent recombinant canine adenovirus type-2 expressing the rabies virus glycoprotein (SRV9 strain) by a different strategy from that reported previously, i.e., the recombinant genome carrying the glycoprotein cDNA was generated by a series of strictly gene cloning steps, infectious recombinant virus was obtained by transfecting the recombinant genome into a canine kidney cell line, MDCK. This recombinant virus, CAV-E3delta-CGS, was subcutaneously injected into dogs. All vaccinated dogs produced effective neutralizing antibodies after one inoculation and a stronger anamnestic immune response was produced after booster injection. The immunized dogs could survive the challenge of 60,000 mouse LD50 CVS-24, which is lethal to all unimmunized dogs and is comparable to the conventional vaccines. The immunity lasts for months with a protective level of neutralizing antibody. This recombinant virus would be an alternative to the attenuated and the inactivated rabies vaccines and be prospective in immunizing dogs against rabies.  相似文献   

13.
Wang H  Zhang G  Wen Y  Yang S  Xia X  Fu ZF 《PloS one》2011,6(9):e25414
Recently it was found that prior immunization with recombinant rabies virus (RABV) expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) (LBNSE-GM-CSF) resulted in high innate/adaptive immune responses and protection against challenge with virulent RABV (Wen et al., JVI, 2011). In this study, the ability of LBNSE-GM-CSF to prevent animals from developing rabies was investigated in mice after infection with lethal doses of street RABV. It was found that intracerebral administration of LBNSE-GM-CSF protected more mice from developing rabies than sham-treated mice as late as day 5 after infection with street RABV. Intracerebral administration of LBNSE-GM-CSF resulted in significantly higher levels of chemokine/cytokine expression and more infiltration of inflammatory and immune cells into the central nervous system (CNS) than sham-administration or administration with UV-inactivated LBNSE-GM-CSF. Enhancement of blood-brain barrier (BBB) permeability and increases in virus neutralizing antibodies (VNA) were also observed in mice treated with LBNSE-GM-CSF. On the other hand, intracerebral administration with UV-inactivated LBNSE-GM-CSF did not increase protection despite the fact that VNA were induced in the periphery. However, intracerebral administration with chemoattractant protein-1 (MCP-1, also termed CCL2) increased significantly the protective efficacy of UV-inactivated LBNSE-GM-CSF. Together these studies confirm that direct administration of LBNSE-GM-CSF can enhance the innate and adaptive immunity as well as the BBB permeability, thus allowing infiltration of inflammatory cells and other immune effectors enter into the CNS to clear the virus and prevent the development of rabies.  相似文献   

14.
The molecular mechanisms underlying the directional neuron-to-epithelial cell transport of herpesvirus particles during infection are poorly understood. To study the role of the viral glycoprotein D (gD) in the directional spread of herpes simplex virus (HSV) and pseudorabies virus (PRV) infection, a culture system consisting of sympathetic neurons or epithelial cells in different compartments was employed. We discovered that PRV infection could spread efficiently from neurons to cells and back to neurons in the absence of gD, the viral ligand required for entry of extracellular particles. Unexpectedly, PRV infection can also spread transneuronally via axo-axonal contacts. We show that this form of interaxonal spread between neurons is gD independent and is not mediated by extracellular virions. We also found that unlike PRV gD, HSV-1 gD is required for neuron-to-cell spread of infection. Neither of the host cell gD receptors (HVEM and nectin-1) is required in target primary fibroblasts for neuron-to-cell spread of HSV-1 or PRV infection.  相似文献   

15.
16.
17.
18.
In experiments of curative vaccination, carried out with the use of an experimental model similar to the current practice of treatment with antirabies preparations, the advantages of using tissue-culture rabies vaccine with immunogenic potency equal to 1.3 international units (I. U.) were shown. In these experiments the vaccine was introduced into guinea pigs infected with fixed rabies virus, the course of vaccination consisting of 14 daily injections. No correlation between the induction of virus-neutralizing antibodies and the immunogenic potency of tissue-culture rabies vaccine was established: the use of the vaccine with immunogenic potency equal to 0,3 and 1,3 I.U. had no essential influence on the level of antibody formation in the animals.  相似文献   

19.
The effect of tumor necrosis factor alpha (TNF-alpha) on rabies virus (RV) infection of the mouse central nervous system (CNS) was studied, using recombinant RV engineered to express either soluble TNF-alpha [SPBN-TNF-alpha+] or insoluble membrane-bound TNF-alpha [SPBN-TNF-alpha(MEM)]. Growth curves derived from infections of mouse neuroblastoma NA cells revealed significantly less spread and production of SPBN-TNF-alpha+ than of SPBN-TNF-alpha(MEM) or SPBN-TNF-alpha-, which carries an inactivated TNF-alpha gene. The expression of soluble or membrane-bound TNF-alpha was not associated with increased cell death or induction of alpha/beta interferons. Brains of mice infected intranasally with SPBN-TNF-alpha+ showed significantly less virus spread than did mouse brains after SPBN-TNF-alpha- infection, and none of the SPBN-TNF-alpha+-infected mice succumbed to RV infection, whereas 80% of SPBN-TNF-alpha- -infected mice died. Reduced virus spread in SPBN-TNF-alpha+-infected mouse brains was paralleled by enhanced CNS inflammation, including T-cell infiltration and microglial activation. These data suggest that TNF-alpha exerts its protective activity in the brain directly through an as yet unknown antiviral mechanism and indirectly through the induction of inflammatory processes in the CNS.  相似文献   

20.
An attempt to define a severe suppression of cell-mediated immunity by street rabies virus infection was undertaken by using the mice lethally and peripherally infected with a street rabies virus (1088 strain). The cell-mediated cytotoxic (CMC) activity of the spleen cells from those mice once slightly increased until day 4 after infection but declined rapidly thereafter until their death on days 10 to 12 after infection. In parallel with a decrease of CMC response of the spleen cells from 1088-infected mice, proliferative response to Con A, IL-2 activity in the culture supernatants of Con A-induced proliferation, responsiveness to exogenously added IL-2 and to Con A to express IL-2R, of those cells became suppressed, and the marked decrease of the total number of spleen cells was observed. Selective depletion of CD4+ and CD8+ cells in the spleens, abnormalities of IL-1 and E-type prostaglandins (PGE2) production or production of inhibitory component able to block IL-2 activity by spleen cells were not observed and these factors did not appear to be associated with the suppression of proliferative response to Con A. However, an apparent association of CD8+ cells in the suppression of differentiation of pre-cytotoxic lymphocytes (CTL) into CTL was demonstrated in the co-culture experiments of the spleen cells from 1088-infected mice with spleen cells of mice infected with an attenuated rabies virus (ERA strain) which can induce higher levels of CMC response. There was no evidence of the productive replication of rabies virus in thymus and spleen of 1088-infected mice. The relationship of these observations to current theories on virus-induced immunosuppression was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号