首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Androgenic and estrogenic steroids enhance muscle growth in a number of species; however, the mechanism by which anabolic steroids enhance muscle growth is not known. Castrated male cattle (steers) provide a particularly good model system in which to study the effects of anabolic steroids on muscle growth because they respond dramatically to treatment with both estrogens and androgens. The goal of this study was to determine if treatment of bovine satellite cell (BSC) cultures with 17beta-estradiol (E(2)) or trenbolone (a synthetic androgen) directly affects proliferation rate or level of mRNA for estrogen receptor (ER)-alpha, androgen receptor, and growth factors that have been shown to affect muscle growth (insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3, and myostatin). BSC cultures were established from the semimembranosus muscles of steers and then treated for 48 h with various concentrations of E(2) or trenbolone ranging from 0.001 to 10 nM. IGF-I mRNA levels in proliferating BSC cultures were significantly increased at 0.01 (1.9-times control values, P < 0.02) and at 0.1, 1, and 10 nM E(2) (2.9-, 3.5-, and 3.5-times control values, respectively, P < 0.0001). Additionally both 1 and 10 nM trenbolone increased IGF-I mRNA levels to 1.7-times control values (P < 0.02). ER-alpha mRNA was detectable in BSC cultures, and levels were increased (2.3-times control levels, P < 0.001) in cultures treated with 0.001 nM E(2) but not in cultures treated with higher concentrations of E(2). Androgen receptor mRNA levels also were increased (1.5-times control levels, P < 0.02) in cultures treated with 0.001 nM trenbolone but not by treatment with higher concentrations of trenbolone. Levels of IGFBP-3 were increased (1.4-times control values, P < 0.02) by treatment with 0.001 nM E(2) but not by treatment with high concentrations of E(2). Myostatin mRNA levels were not affected by any concentration of either of the steroids. Although, levels of IGF-I mRNA were 10-times greater (P < 0.02) in fused BSC cultures than in proliferating cultures, treatment of fused cultures for 48 h with 10 nM E(2) increased IGF-I mRNA levels (2.5-times control levels, P < 0.02). Both E(2) and trenbolone increased (3)H-thymidine incorporation rate (1.5-times control levels, P < 0.001) in BSC cultures in media containing serum from which IGFBP-3 had been removed by anti-IGFBP-3 affinity chromatography. In summary, treatment of BSC cultures with either E(2) or trenbolone increased IGF-I mRNA level and proliferation rate, thus, establishing that these steroids have direct anabolic effects on cells present in the BSC culture.  相似文献   

3.
4.
5.
Many steroid hormones such as estrogen (E2) bind to their receptors for the regulation of biological processes. Pregnenolone (P5) is the precursor form of almost all steroid hormones and is often used to treat skin disorders and neurological complications. However, the mechanism and physiological function of P5 in reproductive organs are not well established. In this study, we investigated the effects of P5 on activation and expression of E2 receptor (ER) in the uteri and ovaries. To study the mechanism of P5 directly, Ishikawa cells were transfected with E2 response element (ERE)‐luciferase plasmid and isoforms of ER. ERE‐luciferase activity induced by P5 was similar to that induced by E2, and P5 showed high activity for ERβ without any relevance to P5‐metabolizing hormones such as progesterone (P4) and E2. In an animal study, immature female rats treated with P5 showed upregulation of ERα and downregulation of ERβ in the uteri, which is the main organ expressing ERα. In ERβ‐expressing organ ovaries, estrogen receptor 1, estrogen receptor 2, and P4 receptor were all downregulated by P5 and E2. Also, a decrease of ovarian cell proliferation and viability was observed in response to P5 relative to the control, suggesting that P5 may be a candidate for antiproliferative hormone of ovarian cancer. These findings suggest that P5 stimulates ERE promoter by ERβ‐mediated signaling in the uteri and ovaries. Activation of ERβ by P5 may help in understanding the mechanism of ER‐related female reproductive diseases such as endometriosis and ovarian cancer.  相似文献   

6.
7.
Estrogens play an important role in the regulation of placental function, and 17-beta-estradiol (E2) production rises eighty fold during human pregnancy. Although term placenta has been found to specifically bind estrogens, cellular localization of estrogen receptor alpha (ER-alpha) in trophoblast remains unclear. We used western blot analysis and immunohistochemistry with h-151 and ID5 monoclonal antibodies to determine the expression and cellular localization of ER-alpha protein in human placentae and cultured trophoblast cells. Western blot analysis revealed a ~65 kDa ER-alpha band in MCF-7 breast carcinoma cells (positive control). A similar band was detected in five normal term placentae exhibiting strong expression of Thy-1 differentiation protein in the villous core. However, five other term placentae, which exhibited low or no Thy-1 expression (abnormal placentae), exhibited virtually no ER-alpha expression. In normal placentae, nuclear ER-alpha expression was confined to villous cytotrophoblast cells (CT), but syncytiotrophoblast (ST) and extravillous trophoblast cells were unstained. In abnormal placentae no CT expressing ER-alpha were detected. Normal and abnormal placentae also showed ER-alpha expression in villous vascular pericytes and amniotic (but not villous) fibroblasts; no staining was detected in amniotic epithelial cells or decidual cells. All cultured trophoblast cells derived from the same normal and abnormal placentae showed distinct ER-alpha expression in western blots, and the ER-alpha expression was confined to the differentiating CT, but not to the mature ST. Trophoblast cells from six additional placentae were cultured in normal medium with phenol red (a weak estrogen) as above (PhR+), or plated in phenol red-free medium (PhR-) without or with mid-pregnancy levels of E2 (20 nM). Culture in PhR- medium without E2 caused retardation of syncytium formation and PhR-medium with E2 caused acceleration of syncytium formation compared to cultures in PhR+ medium. These data indicate that the considerable increase in estrogen production during pregnancy may play a role, via the ER-alpha, in the stimulation of CT differentiation and promote function in normal placentae. This mechanism, however, may not operate in abnormal placentae, which show a lack of ER-alpha expression.  相似文献   

8.
Estrogen (E2) deficiency is responsible for increased bone turnover in the postmenopausal period, and it can be prevented by estrogen replacement therapy. The way estrogen acts on bone cells is not fully understood. Human bone marrow cell cultures may be a reliable model for studying the action of steroids on osteoclastogenesis in vitro. We examine the effects of estradiol and Raloxifene, a selective estrogen receptor modulator, on human primary bone marrow cells cultured for 15 days. 17beta-estradiol and Raloxifene significantly decreased the number of tartrate-resistant acid phosphatase multinucleate cells from osteoclast precursors on day 15. Estrogen receptor alpha (ER-alpha) mRNA was present in bone marrow mononuclear cells cultured for 5 days, but there was no estrogen receptor beta (ER-beta) mRNA, suggesting that this effect was mediated by ER-alpha. 15-day cultures no longer contained ER-alpha mRNA, suggesting that estrogen acts on early events of osteoclast differentiation. Finally, 10-8 M 17beta-estradiol has no effect on the release of IL-6 and IL-6-sr into the medium of marrow mononuclear cells cultured for 5 or 15 days. Osteoclast apoptosis was not affected by estradiol or Raloxifene after 15 days of culture under our conditions. In conclusion, we have shown that both estradiol and Raloxifene inhibit osteoclast differentiation in human bone marrow mononuclear cultures. The biological effect that can mimic in vivo differentiation could be mediated through ER-alpha.  相似文献   

9.
10.
11.
Kim J  Um SJ  Woo J  Kim JY  Kim HA  Jang KH  Kang SA  Lim BO  Kang I  Choue RW  Cho Y 《Life sciences》2005,78(1):30-40
The seeds of Rhynchosia volubilis (SRV) (Leguminosae) and soybean have been used in oriental folk medicine to prevent postmenopausal osteoporosis. Their beneficial effects are caused by a high content of isoflavone, which function as partial agonists or antagonists of estrogen. To compare the estrogenic effects of SRV and soybean on the MG-63 osteoblastic cell proliferation, 70% methanol extracts of SRV or soybean were treated on MG-63 cells. Although biphasic over a concentration range of 0.001 mg/ml-0.1 mg/ml, both SRV and soybean extracts increased MG-63 cell proliferation. However SRV was more effective at increasing the cell proliferation that paralleled with the greater estrogenic effects as determined by estrogen receptor alpha (ERalpha) expression, an estrogenic response element (ERE)-luciferase activity and the selective expression of insulin-like growth factor-I (IGF-I). SRV-induced IGF-I expression resulted from increases in the mRNA levels. Despite the increased expression of ERbeta, ERE activity and IGF-I expression by soybean were lower than those by SRV. Furthermore, the comparable estrogenic effects between SRV and the combined treatment of genistein and daidzein standards at 0.5 x 10(-8) M, which is a concentration of these two isoflavones similar to that of SRV at 0.001 mg/ml, demonstrate that the greater estrogenicity of SRV for MG-63 cell proliferation is mediated by the synergism of low levels of isoflavones for the selective expression of IGF-I.  相似文献   

12.
13.
14.
There are sex differences in free‐running rhythms, activity level and activity distribution that are attributed, in part, to the action of gonadal hormones. We tested the hypothesis that non‐classical estrogenic signaling pathways at estrogen receptor subtype 1 (ESR1) modify the amplitude and phase of activity. We used ESR1 knock‐out mice (ERKO) and non‐classical estrogen receptor knock‐in mice (NERKI). ERKO animals are unable to respond to estrogen at the ESR1 and NERKI animals lack the ability to respond to estrogens via the estrogen response element‐mediated pathway, but can still respond via non‐classical mechanisms. We compared intact male and female ERKO, NERKI and wildtype (WT) mice with respect to total wheel‐running activity, activity distribution across the 24‐h day, phase angle of activity onset and free‐running period (τ) and the duration of activity in constant conditions. WT females had significantly greater activity than WT males, and this activity was more consolidated to the dark phase of the light:dark cycle. These sex differences were absent in the NERKI and ERKO animals. Among females, NERKI and ERKO animals had greater activity during the light phase than WT counterparts. Additionally, we have identified a novel contribution of non‐classical estrogen signaling pathways on the distribution of activity. Our data suggest that total activity is ESR1‐dependent and daily activity patterns depend on both classical and non‐classical actions of estrogens. These data will aid in identifying the mechanisms underlying sex differences in sleep–wake cycles and the influence of steroid hormones on circadian patterns.  相似文献   

15.
16.
17.
Insulin-like growth factor I (IGF-I) potently stimulates intestinal growth. Insulin receptor substrate-1 (IRS-1) mediates proliferative and antiapoptotic actions of IGF-I in cell lines, but its in vivo relevance in intestine is not defined. This study tested the hypothesis that there is cell type-specific dependence on IRS-1 as a mediator of IGF-I action. Length, mass, crypt cell proliferation, and apoptosis were measured in small intestine and colon of IRS-1-null mice and wild-type (WT) littermates and in colon of IRS-1-null or WT mice expressing IGF-I transgenes. Expression of IGF-I receptor and signaling intermediates was examined in intestine of WT and IRS-1-null mice, cultured intestinal epithelial cells, and myofibroblasts. Absolute IRS-1 deficiency reduced mucosal mass in jejunum and colon, but effects were more pronounced in colon. Muscularis mass was decreased in both segments. In IGF-I transgenics, IRS-1 deficiency significantly attenuated IGF-I-stimulated growth of colonic mucosa and abolished antiapoptotic but not mitogenic effects of IGF-I transgene on crypt cells. IGF-I-induced muscularis growth was unaffected by IRS-1 deficiency. In intestinal epithelial cells, IRS-1 was expressed at higher levels than IRS-2 and was preferentially activated by IGF-I. In contrast, IGF-I activated both IRS-1 and IRS-2 in intestinal myofibroblasts and IRS-2 activation was upregulated in IRS-1-null myofibroblasts. We conclude that the intestinal epithelium but not the muscularis requires IRS-1 for normal trophic actions of IGF-I and that IRS-1 is required for antiapoptotic but not mitogenic effects of IGF-I in the intestinal crypts in vivo.  相似文献   

18.
19.
Estrogens are mitogenic for estrogen receptor (ER)-positive breast cancer cells. Current treatment of ER-positive breast tumors is directed towards interruption of estrogen activity. We report that treatment of ER-positive breast cancer cells with kaempferol resulted in a time- and dose-dependent decrease in cell number. The concentration required to produce 50% growth inhibition at 48 h was approximately 35.0 and 70.0 microM for ER-positive and ER-negative breast cancer cells, respectively. For MCF-7 cells, a reduction in the ER-alpha mRNA equivalent to 50, 12, 10% of controls was observed 24 h after treatment with 17.5, 35.0, and 70.0 microM of kaempferol, respectively. Concomitantly, these treatments led to a 58, 80, and 85% decrease in ER-alpha protein. The inhibitory effect of kaempferol on ER-alpha levels was seen as early as 6 h post-treatment. Kaempferol treatment also led in a dose-dependent decrease in the expression of progesterone receptor (PgR), cyclin D1, and insulin receptor substrate 1 (IRS-1). Immunocytochemical study revealed that ER-alpha protein in kaempferol-treated MCF-7 cells formed an aggregation in the nuclei. Kaempferol also induced degradation of ER-alpha by a different pathway than that were observed for the antiestrogen ICI 182,780 and estradiol. Estradiol-induced MCF-7 cell proliferation and expression of the estrogen-responsive-element-reporter gene activity were abolished in cells co-treated with kaempferol. These findings suggest that modulation of ER-alpha expression and function by kaempferol may be, in part, responsible for its anti-proliferative effects seen in in vitro.  相似文献   

20.
Estradiol influences the level and distribution of daily activity, the duration of the free-running period, and the behavioral phase response to light pulses. However, the mechanisms by which estradiol regulates daily and circadian rhythms are not fully understood. We tested the hypothesis that estrogens modulate daily activity patterns via both classical and “non-classical” actions at the estrogen receptor subtype 1 (ESR1). We used female transgenic mice with mutations in their estrogen response pathways; ESR1 knock-out (ERKO) mice and “non-classical” estrogen receptor knock-in (NERKI) mice. NERKI mice have an ESR1 receptor with a mutation in the estrogen-response-element binding domain, allowing only actions via “non-classical” genomic and second messenger pathways. Ovariectomized female NERKI, ERKO, and wildtype (WT) mice were given a subcutaneous capsule with low- or high-dose estradiol and compared with counterparts with no hormone replacement. We measured wheel-running activity in a light:dark cycle and constant darkness, and the behavioral phase response to light pulses given at different points during the subjective day and night. Estradiol increased average daily wheel-running, consolidated activity to the dark phase, and shortened the endogenous period in WT, but not NERKI and ERKO mice. The timing of activity onset during entrainment was advanced in all estradiol-treated animals regardless of genotype suggesting an ESR1-independent mechanism. We propose that estradiol modifies period, activity level, and distribution of activity via classical actions of ESR1 whereas an ESR1 independent mechanism regulates the phase of rhythms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号