首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fifty-d-old poplar (Populus deltoides L.) plants were irrigated with 50-200 mM NaCl. 100 and 200 mM NaCl significantly reduced net photosynthetic rate, chlorophyll and carotenoid contents, leaf area, dry matter accumulation, and harvest index (HI) in all tested poplar clones (Bahar, S7C15, and WSL22). Clone S7C15 was more tolerant to salinity than the other clones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Singh  M.  Jain  M.  Pant  R.C. 《Photosynthetica》2000,36(4):605-609
Fifty-d-old poplar (Populus deltoides L.) plants were irrigated with 50-200 mM NaCl. 100 and 200 mM NaCl significantly reduced net photosynthetic rate, chlorophyll and carotenoid contents, leaf area, dry matter accumulation, and harvest index (HI) in all tested poplar clones (Bahar, S7C15, and WSL22). Clone S7C15 was more tolerant to salinity than the other clones.  相似文献   

3.
4.
水分亏缺条件下玉米根系PIP2-5基因的表达(简报)   总被引:10,自引:0,他引:10  
在PEG-6000模拟水分亏缺条件下,以微管蛋白基因为内参基因,水通道蛋白基因PIP2—5为检测基因,采用半定量逆转录聚合酶链式反应(RT-PCR)体系检测PIP2—5基因在玉米根系中的表达的结果表明,人工模拟水分亏缺条下PIP2—5基因表达量高于正常水分条件下的。这暗示,水分亏缺条件下细胞-细胞途径对根系吸水的贡献可能增大。  相似文献   

5.
Morphological and anatomical parameters which are variable underroot anaerobiosis in Triticum aestivum were checked on fivetaxa of primitive and modern wheats (and the related genus Aegilops).The plants were grown in nutrient solution which was eitheraerated or flushed with nitrogen. When the plants were flushedwith nitrogen a general retardation in longitudinal root growthoccurred in all of them, but only Triticum aestivum showed aclear promotion of growth of later appearing roots enablingit to maintain the same root/shoot ratio even under stress conditions.There was an increase in the volume of intercellular space inthe root cortex of nearly all the plants investigated. The diameterand the lignin content of the roots and the form of their corticalcells also varied. All these changes were expressed in the primitivewheats to a lesser extent than in the advanced Triticum aestivumindicating that there is a clear increase in the adaptive responsein the latter. Triticum species, Aegilops species, wheat, roots, anatomy, anaerobiosis, stress, intercellular space, selection  相似文献   

6.
Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling.  相似文献   

7.
While the Arabidopsis (Arabidopsis thaliana) root has been elegantly characterized with respect to specification of cell identity, its development is missing a number of cellular features present in other species. We have characterized the root development of a wild and a domesticated tomato species, Solanum pennellii and Solanum lycopersicum ‘M82.’ We found extensive differences between these species for root morphology and cellular development including root length, a novel gravity set point angle, differences in cortical cell layer patterning, stem cell niche structure, and radial cell division. Using an introgression line population between these two species, we identified numerous loci that regulate these distinct aspects of development. Specifically we comprehensively identified loci that regulate (1) root length by distinct mechanisms including regulation of cell production within the meristem and the balance between cell division and expansion, (2) the gravity set point angle, and (3) radial cell division or expansion either in specific cell types or generally across multiple cell types. Our findings provide a novel perspective on the regulation of root growth and development between species. These loci have exciting implications with respect to regulation of drought resistance or salinity tolerance and regulation of root development in a family that has undergone domestication.The root system is of vital importance to plants because it anchors the plant and its cells absorb and transport water, nutrients, and solutes to the shoot. The root system has a complex branching architecture with numerous cell types whose development must be dynamic, plastic, and highly responsive to the environment to maximize plant fitness and yield. To optimize root system architecture for the specific environment in which the plant is growing, developmental programs associated with distinct developmental stages, and cell types are specifically and precisely regulated by both local and global signals. For instance, local nitrogen sources induce root hair tip growth and can regulate lateral root initiation (Malamy and Ryan, 2001; Bloch et al., 2011) while the search for water regulates primary root growth (Saucedo et al., 2012). This complex architecture and plasticity complicate the ability to enumerate and study root architecture concomitantly at all cellular and tissue levels. Because of this limitation, population-level studies are typically limited to measuring architecture-level variables such as root length, number, and branching, without focusing on the development of specific cell types that give rise to this architecture.Root cell type specification and development has been extensively studied using classical genetic methods in the model plant Arabidopsis (Arabidopsis thaliana). These studies revealed the elegant simplicity of the Arabidopsis root at the cellular level (Dolan et al., 1993). In Arabidopsis there is an invariant number of cells within the single cortical and endodermal layers of the primary root but variable cell numbers within lateral roots. The core of the root stem cell niche is formed by a set of four quiescent center (QC) cells, with a set of initial cells that give rise to all cell types in the root surrounding the QC. Developmental genetic studies in Arabidopsis have identified a variety of genes that regulate root length, lateral root number, and radial patterning (Benfey and Scheres, 2000; Mähönen et al., 2000; Schiefelbein et al., 2009). This includes the identification of genes that regulate vascular cell proliferation, endodermis and epidermis cell identity, and the asymmetric division of the cortex-endodermis initial (CEI).Arabidopsis has provided an excellent base model for root cellular development, yet as with any species there are unique cellular aspects that are present and/or missing within Arabidopsis that necessitate the study of other species. For instance, Arabidopsis is unusual as it contains only four QC cells, whereas most monocot and dicot species contain a greater number of QC cells (Jiang et al., 2003). To date, the regulatory mechanisms controlling this diversity in QC cell number are completely unknown. Additionally, most monocot and dicot species contain numerous cortex layers that are the product of repeated divisions of a CEI cell, whereas Arabidopsis only contains a single cortex layer (Dolan et al., 1993). The cell number in the cortex and the endodermis is invariant in the Arabidopsis primary root, but variable in many other plant species. Regulation of radial cell number variability in these cell types as well as the pericycle has never been addressed in any plant species. Furthermore, in 80% of flowering plant species, the outer layer of the root’s cortex, or exodermis, contains a suberinized cell wall to restrict passage of solutes from the outside of the root to the inside, but Arabidopsis does not contain a suberinized exodermis. The exodermis has been reported to be derived from an independent cortical initial, suggesting it is an independent specialized cell type whose genetics are not addressable within Arabidopsis (Heimsch and Seago, 2008). Genes regulating the specification of the exodermis and the production of multiple cortical layers have not been identified in monocots or dicots. Thus, classical genetic approaches have not addressed the genetic mechanisms regulating cell proliferation and patterning decisions within many cell types not present in Arabidopsis.One approach with significant potential to identify these unresolved genetic mechanisms and integrate them into the broader control of root system architecture is the use of natural variation within and between species (Shindo et al., 2007). The use of stable mapping populations such as a homozygous introgression line (IL) between two different species provides a stable genetic pool from which to repeatedly phenotype different cellular and morphological aspects of root architecture and integrate them into a common model. This quantitative genetic analysis is typically conducted using quantitative trait locus (QTL) mapping, which has identified loci or, in a small number of cases, genes that regulate root length in monocots and dicots (Bettey et al., 2000; Mouchel et al., 2004; Loudet et al., 2005; Fitz Gerald et al., 2006; Reymond et al., 2006; Fita et al., 2008; Khan et al., 2012). These studies however have typically been limited to the analysis of large-effect loci (Loudet et al., 2005; Reymond et al., 2006) and have not coordinately dissected root architecture at both the morphological and cellular levels.To determine how tomato (Solanum spp.) root morphogenesis is determined by cellular features including radial patterning, radial cell proliferation, radial cell expansion, and compensatory changes in cell expansion when cell proliferation is altered (Hemerly et al., 1995), we performed a detailed characterization of root development in two Solanum species. We used Solanum pennellii, a wild tomato species, and cv M82 of the domesticated species Solanum lycopersicum and their derived IL population. A wild species, S. pennellii is found in coastal deserts and rocky, arid soil and exhibits drought and salt tolerance and pathogen resistance in comparison with the domesticated cv M82 (Dehan and Tal, 1978; Koca et al., 2006; Easlon and Richards, 2009). In this study, we identified significant developmental differences between the two species by measuring a large range of root traits including the cell number within individual cell types, CEI spatiotemporal patterning differences, variability in cortex cell layer and QC cell number, root growth, and a novel gravity set point angle. To explore the link between the whole organ phenotype and cellular level using interspecific genetic variation we used the IL population derived from a cross between cv M82 and S. pennellii (Eshed and Zamir, 1995). This population comprises 76 segmental ILs with marker-defined genomic regions of S. pennellii substituting for homologous intervals of the cultivated variety cv M82 that partition the tomato genome into 107 bins. Measuring the above cellular and morphological phenotypes in these lines identified numerous major- and minor-effect loci for each phenotype, showing that interspecific variation in root development involves a complex suite of genetic changes, many of which display cell type-specific effects.  相似文献   

8.
黄河水灌溉水稻根系及植株生态效应的研究   总被引:1,自引:0,他引:1  
沿黄稻区是一个水稻新区 ,具有独特的生态类型。由于黄河水携带有大量泥沙并含有一定量的营养物质 ,使得在黄河水灌溉条件下水稻根系及植株的生育状况与井水灌溉有较大不同。从目前的报道来看 ,对井灌条件下水稻根系及根系对地上部发育的影响进行了较多研究 ,从不同角度探讨了水稻根系的发育规律及其对产量的影响。川田信一郎曾对不同水分条件下根的发育形态以及施用堆肥对水稻“浅层根”分布进行了研究[10 ],番场宏治研究了土壤水分条件对水稻根分布的影响[9],山崎耕宇研究了水稻根系的形成及其与产量的关系[8]。于贵瑞等研究了高产水稻群…  相似文献   

9.
This study assessed the accumulation of Cd (II), Hg (II), Cr (VI) and Pb (II) in Gynerium sagittatum (Gs), Colocasia esculenta (Ce) and Heliconia psittacorum (He) planted in constructed wetlands treating synthetic landfill leachate. Sixteen bioreactors were operated in two experimental blocks. Metal concentrations in the influent and effluent; root, stem, branch and leaves of plants were analysed, as well as COD, N-NH4+, TKN, T, pH, ORP, DO, and EC. Average removal efficiencies of COD, TKN and NH4+-N were 66, 67 and 72%, respectively and heavy metal removal ranged from 92 to 98% in all units. Cr (VI) was not detected in any effluent sample. The bioconcentration factors (BCF) were 100 -102. The BCF of Cr (VI) was the lowest: 0.59 and 2.5 (L kg?1) for Gs and He respectively; whilst Cd (II) had the highest (130–135 L kg?1) for Gs. Roots showed a higher metal content than shoots. Translocation factors (TF) were lower, He was the plant exhibiting TFs >1 for Pb (II), Cr (T) and Hg (II) and 0.4–0.9 for Cd (II) and Cr (VI). The evaluated plants demonstrate their suitability for phytoremediation of landfill leachate and all of them can be categorized as metals accumulators.  相似文献   

10.
11.
Riparian plants in arid regions face a highly variable water environment controlled by hydrological processes. To understand whether riparian plants adapt to such environments through plastic responses, we compared the root traits, biomass allocation and growth of Populus euphratica Oliv. Seedlings grown in lysimeters filled with clay or clay/river sand sediments under inundation and varying water table conditions. We hypothesized that adaptive phenotypic plasticity is likely to develop or be advantageous in seedlings of this species to allow them to adapt desert floodplain environments. Growth was significantly reduced by inundation. However, rather than following relatively fixed trait and allocation patterns, the seedlings displayed adaptive mechanisms involving the development of adventitious roots to enhance plant stability and obtain oxygen, together with a lower proportion of root biomass. At the whole-plant level, at deeper water table depths, seedlings allocated more biomass to the roots, and total root length increased with decreasing water table depths, regardless of the sediment, consistent with optimal partitioning theory. The sediment type had a significant effect on seedling root traits. P. euphratica displayed very different root traits in different sediment types under the same hydrological conditions, showing a greater first-order root number in clay sediment under shallower water table conditions, whereas rooting depth was greater in clay/river sand sediment under deep water table conditions. In clay sediment, seedlings responded to lower water availability via greater root elongation, while the root surface area was increased through increasing the total root length in clay/river sand sediment, suggesting that seedlings facing deeper water tables are not always likely to increase their root surface area to obtain more water. Our results indicate that P. euphratica seedlings are able to adapt to a range of water table conditions through plastic responses in root traits and biomass allocation.  相似文献   

12.
洞庭湖水系中华沙塘鳢的形态和核型研究   总被引:1,自引:0,他引:1  
对取材于洞庭湖水系沅水和澧水的中华沙塘鳢Odontobutis sinensis进行了形态特征及染色体核型分析,并对其分类地位进行了探讨。染色体标本制作采用PHA和秋水仙素腹腔注射、肾细胞直接制片法。在形态上,洞庭湖水系中华沙塘鳢与其他水域沙塘鳢属鱼类既具相似性,又有各自特征;核型分析显示其二倍体染色体众数为2N=44,核型公式为8ST+36T,染色体臂数(NF)为44,与其他水域沙塘鳢属鱼类核型组成存在差异。  相似文献   

13.
Deep root development, which is important for the drought resistance in rice (Oryza sativa L.), is a complex trait combining various root morphologies. The objective of this study was to elucidate genotypic variation in deep root development in relation to morphological indicators such as vertical root distribution and root growth angle. Two experiments were conducted: one on upland fields, and one in pots and fields. In experiment 1, the root systems of six rice cultivars on upland fields were physio-morphologically analyzed under different water regimes (irrigated and intermittent drought conditions during panicle development). In experiment 2, cultivar differences in root growth angles were evaluated with 12 cultivars using the basket method under irrigated conditions. No cultivar × environment interactions were found for total root length or deep root length between irrigated and drought conditions in experiment 1. This suggests that constitutive root growth, which is genetically determined, is important for deep root development under intermittent drought conditions during reproductive stage. Among root traits, the deep root ratio (i.e., deep root weight divided by total root weight) was most closely related to deep root length under both water regimes. This suggested that vertical root distribution constitutively affects deep root length. Significant genotypic variation existed in the nodal root diameter and root growth angle of upland rice in experiment 2. It was considered that genotypes with thick roots allocated more assimilates to deep roots through root growth angles higher to the horizontal plane on upland fields. This is the first report on genotypic variation in the root growth angle of rice on upland fields. It should prove useful for rough estimations of genotypic variation in the vertical root distribution of upland rice because root growth angle is rapidly and easily measured.  相似文献   

14.
DNA methylation is an epigenetic mechanism with the potential to regulate gene expression and affect plant phenotypes. Both hybridization and genome doubling may affect the DNA methylation status of newly formed allopolyploid plants. Previous studies demonstrated that changes in cytosine methylation levels and patterns were different among individual hybrid plant, therefore, studies investigating the characteristics of variation in cytosine methylation status must be conducted at the population level to avoid sampling error. In the present study, an F1 hybrid diploid population and three allotriploid populations with different heterozygosity [originating from first-division restitution (FDR), second-division restitution (SDR), and post-meiotic restitution (PMR) 2n eggs of the same female parent] were used to investigate cytosine methylation inheritance and variation relative to their common parents using methylation-sensitive amplification polymorphism (MSAP). The variation in cytosine methylation in individuals in each population exhibited substantial differences, confirming the necessity of population epigenetics. The total methylation levels of the diploid population were significantly higher than in the parents, but those of the three allotriploid populations were significantly lower than in the parents, indicating that both hybridization and polyploidization contributed to cytosine methylation variation. The vast majority of methylated status could be inherited from the parents, and the average percentages of non-additive variation were 6.29, 3.27, 5.49 and 5.07% in the diploid, FDR, SDR and PMR progeny populations, respectively. This study lays a foundation for further research on population epigenetics in allopolyploids.  相似文献   

15.
16.
The purpose of this study was to examine the telomerase activity, population doubling time (PDT), morphological alterations, and the cell cycle status with activity of senescence-associated-ß-galactosidase in porcine mesenchymal stem cells (MSCs) and fibroblasts during an extended in vitro culture. MSCs and fibroblasts were isolated from bone marrow and ear skin of a miniature pig, respectively, and cultured up to 20 passages. The analysis was carried out in MSCs and fibroblasts at 1, 5, 10, 15, and 20 passages. Relative telomerase activity (RTA) levels were significantly (P < 0.05) higher in MSCs than in fibroblasts at all the passages. The PDT and cellular size slightly increased in MSCs at later passages. In contrast, fibroblasts had significantly (P < 0.05) increased PDT and cellular size, and the morphology revealed senescent-like abnormal type after passage 10. Further, the high incidence of ß-galactosidase stained cells was observed in fibroblasts compared to that of MSCs at passage 15, and cell cycle stage at G0 / G1 phase was significantly (P < 0.05) increased in the fibroblasts at 15 and 20 passages compared to that of MSCs. Based on these observations, we concluded that porcine MSCs possessed more tolerance against senescence and aging compared to fibroblasts following prolonged in vitro culture.  相似文献   

17.
Three different types of compost, PM-5 (poultry manure compost), 338 (dairy cattle manure compost), and NVIRO-4 (alkaline-pH-stabilized dairy cattle manure compost), and irrigation water were inoculated with an avirulent strain of Salmonella enterica serovar Typhimurium at 107 CFU g−1 and 105 CFU ml−1, respectively, to determine the persistence of salmonellae in soils containing these composts, in irrigation water, and also on carrots and radishes grown in these contaminated soils. A split-plot block design plan was used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but with contaminated water applied) and five replicates for a total of 25 plots for each crop, with each plot measuring 1.8 × 4.6 m. Salmonellae persisted for an extended period of time, with the bacteria surviving in soil samples for 203 to 231 days, and were detected after seeds were sown for 84 and 203 days on radishes and carrots, respectively. Salmonella survival was greatest in soil amended with poultry compost and least in soil containing alkaline-pH-stabilized dairy cattle manure compost. Survival profiles of Salmonella on vegetables and soil samples contaminated by irrigation water were similar to those observed when contamination occurred through compost. Hence, both contaminated manure compost and irrigation water can play an important role in contaminating soil and root vegetables with salmonellae for several months.  相似文献   

18.
19.
20.
沙漠腹地天然绿洲不同林龄胡杨水分利用来源   总被引:1,自引:0,他引:1  
了解干旱荒漠绿洲区主要植被的水分利用来源,能为该区域植被保护和水资源的合理分配提供科学依据.本研究以达里雅布依天然绿洲胡杨幼龄木(胸径DBH≤10 cm)、成熟木(10 cm<DBH≤40 cm)和过熟木(DBH>40 cm)为对象,测定不同林龄胡杨木质部水和潜在水源(地表水、0~3m土层土壤水、地下水)的氧同位素,运...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号