首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Primary differentiation in sea urchin embryos, animalized by zinc, has been gauged by the formation of characteristic endodermal and mesodermal tissue derivatives and by the accumulation of the ectoderm-specific Spec 1 mRNA. Increasing the dosage of zinc diminishes the differentiation of secondary mesenchyme, primary mesenchyme, endoderm, and ectoderm, in decreasing order. Treatment is effective only during the blastula stages, involving successive periods of sensitivity for these tissues. Removal of zinc with chelator results in the resumption of differentiation to increasing degree for this series of tissues. The developmental initiation of Spec 1 gene expression, normally at the earliest blastula stage, can be delayed by zinc for at least 30 hr before being implemented by treatment of the animalized embryos with a chelator. We conclude (1) that those processes in the blastula which are required for differentiation and are suppressed by zinc are distinguishable from the determinative processes, which are not affected by the animalizing agent and occur earlier during midcleavage; (2) that animalization by zinc involves a graded failure of primary tissues to form; and (3) that animalization involves a pause in the schedule of differentiation, which can be reinstated by removal of the animalizing agent, thereby providing a survival value inherent in a flexible schedule of development.  相似文献   

4.
5.
6.
7.
8.
9.
SUMMARY Modularity is a salient feature of development and crucial to its evolution. This paper extends modularity to include the concept of gene expression territory, as established for sea urchin embryos. Territories provide a mechanism for partitioning of the cells of a rapidly developing embryo into functional units of a feeding larva. Territories exhibit the characteristics of modules. The paper asks if the embryo and the nonfeeding larva of the direct-developing sea urchin Heliocidaris erythrogramma are organized into gene expression territories, and if its territories correspond to the canonical territories of the pluteus. An analysis of cell lineage and gene expression data for H. erythrogramma shows that skeletogenic cell, coelomic, and vegetal plate gene expression territories are conserved, although they arise from cell lineages distinct from those of the pluteus, and the overall morphology of the larva differs from that of a pluteus. The ectoderm, as in indirect developers, is divided into territories. However, the oral ectodermal territory characteristic of the pluteus is absent in H. erythrogramma. Oral ectoderm is restored in hybrids of H. erythrogramma eggs fertilized by Heliocidaris tuberculata sperm. This indicates that embryonic modules evolve by changes in expression of dominant regulatory genes within territories and that entire modules can be eliminated in evolution of embryos.  相似文献   

10.
Sea-urchin embryo RNAs of 9 kb and 7 kb hybridise with a collagen-coding probe. The delta Tm of the hybrids indicates a 70% sequence identity between these RNA regions. Both RNAs are localised in the pluteus endomesoderm, but accumulate over different developmental periods: the 9 kb RNA first appears in the blastula and reaches a maximum concentration during the gastrula stages, while the 7 kb RNA is first detected in the gastrula and is at maximal concentration in the pluteus larva. Animalization by transient exposure of the early stage embryo to Zn2+ alters the developmental profile of the 9 kb collagen mRNA in a way that is clearly different from responses of other mRNAs whose accumulations are initiated during the blastula stage (Nemer, M. (1986) Dev. Biol. 114, 214-224).  相似文献   

11.
12.
Five developmentally regulated sea urchin mRNA sequences which increase in abundance between the blastula and pluteus stages of development were isolated by molecular cloning of cDNA. The regulated sequences all appeared in moderately abundant mRNA molecules of pluteus cells and represented 4% of the clones tested. There were no regulated sequences detected in the 40% of the clones which hybridized to the most abundant mRNA, and the screening procedures were inadequate to detect possible regulation in the 20 to 30% of the clones presumably derived from rare-class mRNA. The reaction of 32P[cDNA] from blastula and pluteus mRNA to dots of the cloned DNAs on nitrocellulose filters indicated that the mRNAs complementary to the different cloned pluteus-specific sequences were between 3- and 47-fold more prevalent at the pluteus stage than at the blastula stage. Polyadenylated RNA from different developmental stages was transferred from electrophoretic gels to nitrocellulose filters and reacted to the different cloned sequences. The regulated mRNAs were undetectable in the RNA of 3-h embryos, became evident at the hatching blastula stage, and reached a maximum in abundance by the gastrula or pluteus stage. Certain of the clones reacted to two sizes of mRNA which did not vary coordinately with development. Transfers of RNA isolated from each of the three cell layers of pluteus embryos that were reacted to the cloned sequences revealed that two of the sequences were found in the mRNA of all three layers, two were ectoderm specific, and one was endoderm specific. Four of the regulated sequences were complementary to one or two major bands and one to at least 50 bands on Southern transfers of restriction endonuclease-digested total sea urchin DNA.  相似文献   

13.
The direct-developing sea urchin species Heliocidaris erythrogramma has a radically modified ontogeny. Along with gains of novel features, its entire ectoderm has been reorganized, resulting in the apparent absence of a differentiated oral ectoderm, a major module present in the pluteus of indirect-developing species, such as H. tuberculata. The restoration of an obvious oral ectoderm in H. erythrogrammaxH. tuberculata hybrids, indicates the action of dominant regulatory factors from the H. tuberculata genome. We sought candidate regulatory genes based on the prediction that they should include genes that govern development of the oral ectoderm in the pluteus, but play different roles in H. erythrogramma. Such genes may have a large effect in the evolution of development. Goosecoid (Gsc), Msx, and the sea urchin Abd-B-like gene (Hox11/13b) are present and expressed in both species and the hybrid embryos. Both Gsc and Msx are oral ectoderm specific in H. tuberculata, and show novel and distinct expression patterns in H. erythrogramma. Gsc assumes a novel ectodermal pattern and Msx shifts to a novel and largely mesodermal pattern. Both Gsc and Msx show a restoration of oral ectoderm expression in hybrids. Hox11/13b is not expressed in oral ectoderm in H. tuberculata, but is conserved in posterior spatial expression among H. tuberculata, H. erythrogramma and hybrids, serving as a control. Competitive RT-PCR shows that Gsc, Msx, and Hox11/13b are under different quantitative and temporal controls in the Heliocidaris species and the hybrids. The implications for the involvement of these genes in the rapid evolution of a direct developing larva are discussed.  相似文献   

14.
The distal region of the S. purpuratus actin CyIIIb gene, between −400 and −1400 nucleotides, contains at least three distinct cis-acting elements (C1R, C1L and E1) which are necessary for correct expression of fusion reporter genes in transgenic sea urchin embryos. The contribution of these elements in the temporal and spatial regulation of the gene was analyzed by single and double site-directed mutagenesis in fusion constructs which carry the bacterial chloramphenicol acetyl transferase (CAT) gene as a reporter. Following microinjection of the transgenes in sea urchin embryos, the activity of the mutants was compared to the wild type in time and space by measuring CAT activity at the blastula and pluteus embryonic stages and by in situ hybridization to the CAT mRNA at pluteus stage. Our results indicate that E1 involved in the temporal regulation of CyIIIb and that all three elements are necessary and sufficient to confer aboral (dorsal) ectoderm specificity to the proximal promoter. This is achieved by suppressing the promoter's activity in all other tissues by the cooperative interaction of the cis-acting elements. The C1R element, binding site of the nuclear receptors SpCOUP-TF and SpSHR2, is by itself sufficient to restrict expression in the ectoderm, whereas the aboral ectoderm restricted expression requires in addition the presence of both C1L adn E1. It is therefore evident, that the actin CyIIIb gene is exclusively expressed in the aboral ectoderm by a combinatorial repression in all other cell lineages of the developing embryo.  相似文献   

15.
We have examined the importance of the extracellular environment on the ability of separated cells of sea urchin embryos (Strongylocentrotus purpuratus) to carry out patterns of mRNA accumulation and decay characteristic of intact embryos. Embryos were dissociated into individual blastomeres at 16-cell stage and maintained in calcium-free sea water so that daughter cells continuously separated. Levels of eleven different mRNAs in these cells were compared to those in control embryos when the latter reached mesenchyme blastula stage, by which time cells in major regions of the intact embryo have assumed distinctive patterns of message accumulation. Abrogation of interactions among cells resulted in marked differences in accumulation and/or turnover of the individual mRNAs, which are expressed with diverse temporal and spatial patterns of prevalence in intact embryos. In general, separated cells are competent to execute initial events of mRNA accumulation and decay that occur uniformly in most or all blastomeres of the intact embryo and are likely to be regulated by maternal molecules. The ability of separated cells to accumulate mRNAs that appear slightly later in development depends upon the presumptive tissue in which a given mRNA is found in the normal embryo. Messages that normally accumulate in cells at the vegetal pole also accumulate in dissociated cells either at nearly normal levels or at increased levels. In one such case, that of actin CyIIa, which is normally restricted to mesenchyme cells, in situ hybridization demonstrates that the fraction of dissociated cells expressing this message is 4- to 5-fold higher than in the normal embryo. In contrast, separated cells accumulate significant levels of a message expressed uniformly in the early ectoderm but are unable to execute accumulation and decay of different messages that distinguish oral and aboral ectodermal regions. These data are consistent with the idea that interactions among cells in the intact embryo are important for both positive and negative control of expression of different genes that are early indicators of the specification of cell fate.  相似文献   

16.
17.
18.
We have determined spatial patterns of expression of individual actin genes in embryos of the sea urchin Strongylocentrotus purpuratus. Radioactively labeled probes specific for each of five cytoplasmic-type (Cy) and the single muscle-type (M) mRNAs were hybridized in situ to sections of fixed embryos. M actin mRNA appears only late in development and is confined to a few cells associated with the coelomic rudiments. The five Cy mRNAs fall into three sets, whose times and sites of expression during development are highly distinctive. Different cell lineages express messages of one or more of these sets, but never all three. Although all Cy actin mRNAs exhibit monophasic accumulation in the RNA of whole embryos during the course of development, such accumulation in many cases results from the summation of both increases and decreases in abundance within individual sets of cells. Within the genomic linkage group CyI-CyIIa-CyIIb, expression of CyI and CyIIb appears to be co-ordinate, and quite distinct from that of CyIIa. CyI and CyIIb are expressed in all lineages at some point in embryogenesis, but confined mainly to oral ectoderm and portions of the gut of the pluteus larva. CyIIa mRNAs are restricted to mesenchyme lineages throughout late gastrula stage, and subsequently accumulate in parts of the gut. The CyIIIa and CyIIIb genes, which form a separate linkage group, are expressed only in aboral ectoderm and its precursors. Furthermore, CyIII messages are the only detectable actin mRNAs in this cell lineage after late blastula stage.  相似文献   

19.
Metallothionein (MT) is shown to be present in sea urchin embryos on the basis of its characteristic properties as a small protein (6–7 Da) of extraordinarily high cysteine content, whose biosynthesis is readily induced by heavy metals. Induction by Zn2+ results in the accumulation of the cysteine-rich MT protein, a 0.8 kb MT mRNA and a 2.9 kb nuclear RNA. The amount of MT mRNA is regulated intrinsically through the course of embryogenesis to the pluteus stage: A maternal MT mRNA is poly(A)-deficient and is polyadenylated after fertilization. New MT mRNA begins to accumulate between the seventh and eighth cell cleavage, reaches a maximum at the mesenchyme blastula stage, decreases during gastrulation, and rises again in the early pluteus stage. “Animalizing” embryos with Zn2+ during early embryogenesis causes a sustained accumulation of MT mRNA to levels greater than 25 times the normal amount. MT mRNA is present in high amount in the ectoderm of the pluteus, but is barely detectable in the mesoderm-endoderm tissue fraction. Treatment of either the pluteus or its isolated tissue fractions with Zn2+ results in the induction of MT mRNA accumulation in the mesoderm-endoderm but not in the already MT mRNA-enriched ectoderm. Furthermore, differences in Zn2+ induction of the MT gene in the blastula and gastrula are consistent with a developmental pattern in which MT gene expression is maintained constitutively at a high level in the ectoderm and at a low level in the mesoderm-endoderm tissues, which are, however, preferentially inducible by Zn2+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号