首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Endometriosis is a chronic gynecological inflammatory disorder in which immune system dysregulation is thought to play a role in its initiation and progression. Due to altered sex steroid receptor concentrations and other signaling defects, eutopic endometriotic tissues have an attenuated response to progesterone. This progesterone-resistance contributes to lesion survival, proliferation, pain, and infertility. The current agency-approved hormonal therapies, including synthetic progestins, GnRH agonists, and danazol are often of limited efficacy and counterproductive to fertility and cause systemic side effects due to suppression of endogenous steroid hormone levels. In the current study, we examined the effects of curcumin (CUR, diferuloylmethane), which has long been used as an anti-inflammatory folk medicine in Asian countries for this condition. The basal levels of proinflammatory and proangiogenic chemokines and cytokines expression were higher in primary cultures of stromal cells derived from eutopic endometrium of endometriosis (EESC) subjects compared with normal endometrial stromal cells (NESC). The treatment of EESC and NESC with CUR significantly and dose-dependently reduced chemokine and cytokine secretion over the time course. Notably, CUR treatment significantly decreased phosphorylation of the IKKα/β, NF-κB, STAT3, and JNK signaling pathways under these experimental conditions. Taken together, our findings suggest that CUR has therapeutic potential to abrogate aberrant activation of chemokines and cytokines, and IKKα/β, NF-κB, STAT3, and JNK signaling pathways to reduce inflammation associated with endometriosis.  相似文献   

6.
Diabetic cardiomyopathy is preceded by mitochondrial alterations, and progresses to heart failure. We studied whether treatment with methylene blue (MB), a compound that was reported to serve as an alternate electron carrier within the mitochondrial electron transport chain (ETC), improves mitochondrial metabolism and cardiac function in type 1 diabetes. MB was administered at 10 mg/kg/day to control and diabetic rats. Both echocardiography and hemodynamic studies were performed to assess cardiac function. Mitochondrial studies comprised the measurement of oxidative phosphorylation and specific activities of fatty acid oxidation enzymes. Proteomic studies were employed to compare the level of lysine acetylation on cardiac mitochondrial proteins between the experimental groups. We found that MB facilitates NADH oxidation, increases NAD+, and the activity of deacetylase Sirtuin 3, and reduces protein lysine acetylation in diabetic cardiac mitochondria. We identified that lysine acetylation on 83 sites in 34 proteins is lower in the MB-treated diabetic group compared to the same sites in the untreated diabetic group. These changes occur across critical mitochondrial metabolic pathways including fatty acid transport and oxidation, amino acid metabolism, tricarboxylic acid cycle, ETC, transport, and regulatory proteins. While the MB treatment has no effect on the activities of acyl-CoA dehydrogenases, it decreases 3-hydroxyacyl-CoA dehydrogenase activity and long-chain fatty acid oxidation, and improves cardiac function. Providing an alternative route for mitochondrial electron transport is a novel therapeutic approach to decrease lysine acetylation, alleviate cardiac metabolic inflexibility, and improve cardiac function in diabetes.  相似文献   

7.
8.
Yang  Yujiao  Yun  Debo  Dong  Biqian  Geng  Yuan  Wan  Yong 《Journal of molecular histology》2022,53(2):369-377
Journal of Molecular Histology - Cognitive dysfunction caused by sepsis-associated encephalopathy (SAE) is still poorly understood. It is reported that vasoactive intestinal peptide (VIP) exerts...  相似文献   

9.
10.
This study uncovered the potential clinical value and molecular driving mechanisms of circular RNAs (circRNAs) in gallbladder cancer (GBC). Differentially expressed circRNAs in GBC cells were screened by high-throughput sequencing. CircRNA_CDKN1A (circBase ID: hsa_circ_0076194) was knocked out in BGC-SD cells through transfection with sh-circRNA_CDKN1A. Then, proliferation was investigated via CCK8 and EdU assays, apoptosis via flow cytometry, migration via wound healing assays, and invasion via Transwell assays. Bioinformatics analysis of circRNA_CDKN1A-related signaling pathways was performed using MetScape and g:Profiler. Results showed that the knockdown of circRNA_CDKN1A enhanced the proliferation, migration, and invasion of GBC cells and inhibited apoptosis. In addition, knocking out circRNA_CDKN1A promoted GBC cell proliferation and enhanced the dry indices of the OCT4 protein and CD34 expression levels. The knockdown of circRNA_CDKN1A activated the epithelial–mesenchymal transition pathway. Bioinformatics analysis revealed that the biological role of circRNA_CDKN1A in GBC cells involved the NF-κB pathway. LY2409881, which is an NF-κB inhibitor, reversed the effects induced by the knockdown of circRNA_CDKN1A in GBC-SD cells. In summary, the knockdown of circRNA_CDKN1A promoted the progression of GBC by activating the NF-κB signaling pathway. For the first time, this study revealed the mechanism of circRNA_CDKN1A-mediated regulatory action in GBC and identified the newly discovered circRNA_CDKN1A–NF-κB signaling axis as a potentially important candidate for clinical therapy and prognostic diagnosis of GBC.  相似文献   

11.
12.
13.
Neuroinflammation and accumulation of β-amyloid are critical pathogenic mechanisms of Alzheimer’s disease (AD). In the previous study, we have shown that systemic lipopolysaccharide (LPS) caused neuroinflammation with concomitant increase in β-amyloid and memory impairments in mice. In an attempt to investigate anti-neuroinflammatory properties of obovatol isolated from Magnolia obovata, we administered obovatol (0.2, 0.5 and 1.0 mg/kg/day, p.o.) to animals for 21 days before injection of LPS (0.25 mg/kg, i.p.). We found that obovatol dose-dependently attenuates LPS-induced memory deficit in the Morris water maze and passive avoidance tasks. Consistent with the results of memory tasks, the compound prevented LPS-induced increases in Aβ1-42 formation, β- and γ-secretases activities and levels of amyloid precursor protein, neuronal β-secretase 1 (BACE1), and C99 (a product of BACE1) in the cortex and hippocampus. The LPS-mediated neuroinflammation as determined by Western blots and immunostainings was significantly ameliorated by the compound. Furthermore, LPS-induced nuclear factor (NF)-κB DNA binding activity was drastically abolished by obovatol as shown by the electrophoretic mobility shift assay. The anti-neuroinflammation and anti-amyloidogenesis by obovatol were replicated in in vitro studies. These results show that obovatol mitigates LPS-induced amyloidogenesis and memory impairment via inhibiting NF-κB signal pathway, suggesting that the compound might be plausible therapeutic intervention for neuroinflammation-related diseases such as AD.  相似文献   

14.
Astragalin (AG), a flavonoid from many traditional herbs and medicinal plants, has been described to exhibit in vitro anti-inflammatory activity. The present study aimed to determine the protective effects and the underlying mechanisms of astragalin on lipopolysaccharide-induced endotoxemia and lung injury in mice. Mice were injected intraperitoneally (i.p.) with lipopolysaccharide (LPS) (dose range: 5-40 mg/kg). We observed mice on mortality for 7 days twice a day and recorded survival rates. In drug testing, we examined the therapeutic effects of astragalin (25, 50 or 75 mg/kg) on LPS- induced endotoxemia by dosing orally astragalin 1 hour before LPS challenge. Using an experimental model of LPS-induced acute lung injury (ALI), we examined the effect of astragalin in resolving lung injury. The investigations revealed that pretreatment with astragalin can improve survival during lethal endotoxemia and attenuate inflammatory responses in a murine model of lipopolysaccharide-induced acute lung injury. The mechanisms by which Astragalin exerts its anti-inflammatory effect are correlated with inhibition of tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6) production via inactivation of NF-κB.  相似文献   

15.
16.
The molecular mechanisms underlying activation of the IκB kinase (IKK) complex are presumably best understood in the context of tumor necrosis factor (TNF) receptor-1 (TNFR1) signaling. In fact, it seems that most, if not all, proteins relevant for this process have been identified and extensive biochemical and genetic data are available for the role of these factors in TNF-induced IKK activation. There is evidence that protein modification-independent assembly of a core TNFR1 signaling complex containing TNFR1-associated death domain, receptor interacting kinase?1, TNF receptor-associated factor?2 and cellular inhibitor of apoptosis protein?1 and 2 starts a chain of nondegrading ubiquitination events that culminate in the recruitment and activation of IKK complex-stimulating kinases and the IKK complex itself. Here, we sum up the known details of TNFR1-induced IKK activation, address arising contradictions and discuss possible explanations resolving the apparent discrepancies.  相似文献   

17.

Background  

The similarity property principle has been used extensively in drug discovery to identify small compounds that interact with specific drug targets. Here we show it can be applied to identify the interactions of small molecules within the NF-κB signalling pathway.  相似文献   

18.
19.
20.
《Reproductive biology》2022,22(4):100696
Preeclampsia (PE) is a serious obstetric complication, in which trophoblast cell invasion and migration contribute to placental inflammation. In line with the discovery that mRNA prostaglandin endoperoxide synthase 2 (PTGS2) participates in the inflammatory responses in various disorders, our study aims to explore the role of PTGS2 in trophoblast invasion and further in inflammatory response in PE, ultimately providing new therapeutic targets. Bioinformatics analysis was exploited to examine PTGS2 expression in GSE40182 and find inflammatory response-relevant genes in downstream targets of PTGS2. HTR-8/SVneo cells were treated with lipopolysaccharide (LPS) and transfected with short hairpin RNA against PTGS2 (shPTGS2). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorence assays were performed to quantify the expressions of PTGS2 and involved genes (matrix metallopeptidase 2 (MMP-2), tissue inhibitors of metalloproteinase-2 (TIMP-2), p65, p-p65, IκB-α, p-IκB-α, PTGIS, CAV1, AGTR1). The migration and invasion of trophoblasts were detected through wound healing and Transwell assays. We screened out PTGS2 from GSE40182 dataset. LPS promoted cell migration and invasion, the expressions of PTGS2 and MMP-2, and reduced the expression of TIMP-2, while PTGS2 knockdown reversed all above effects of LPS. Activation of nuclear factor kappa-B (NF-κB) pathway was reinforced by LPS which also upregulated CAV1 and AGTR1 levels, and downregulated PTGIS level. Also, the effects of LPS were offset by PTGS2 knockdown. Altogether, PTGS2 silencing reverses the promoting effect of LPS on trophoblast invasion and inflammation in PE, making a breakthrough in the research regarding molecular mechanism of PE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号