首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tyrosine kinase receptor and protein kinases drawn much attention for the scientific fraternity in drug discovery due to its important role in different cancer, cardiovascular diseases and other hyper-proliferative disorders. Docking studies of pyrazole derivatives with tyrosine kinase and different serine/threonine protein kinases were employed by using flexible ligand docking approach of AutoDock 4.2. Among the molecules tested for docking study, 2-(4-chlorophenyl)-5-(3-(4-chlorophenyl)-5-methyl-1- phenyl-1H-pyrazol-4-yl)-1,3,4-thiadiazole (1b), 2-(4-methoxyphenyl)-5-(3-(4-methoxyphenyl)-5-methyl-1-phenyl-1H-pyrazol-4-yl)- 1,3,4-thiadiazole (1d) and 2-(4-chlorophenyl)-5-(3-(4-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazol-4-yl)-1,3,4-thiadiazole (2b) revealed minimum binding energy of -10.09, -8.57 and -10.35 kJ/mol with VEGFR-2 (2QU5), Aurora A (2W1G) and CDK2 (2VTO) protein targets, respectively. These proteins are representatives of plausible models of interactions with different anticancer agents. All the ligands were docked deeply within the binding pocket region of all the three proteins, showing reasonable hydrogen bonds. The docking study results showed that these pyrazole derivatives are potential inhibitor of all the three protein targets; and also all these docked compounds have good inhibition constant, vdW + Hbond + desolv energy with best RMSD value.  相似文献   

2.
The association of deregulated signal pathways with various diseases has long been a research hotspot. One of the most important signal pathways, the MAPK (mitogen-activated protein kinase) signal pathway, plays a vital role in transducing extracellular signals into vital intracellular mechanisms. While mutations on its key component Raf kinase lead to sever diseases, targeted inhibition has thereby become an attractive therapeutic strategy. Several drugs have been approved for the treatment of Raf relevant diseases, yet more candidates are ever needed as the known drugs have confronted resistance and side effects. In the present study, we primarily investigated the binding modes of type I/II and type II inhibitors with B-Raf kinase. Based on the current knowledge, these ligands were fragmented and recombined to provide new interesting insights. Afterwards, a series of derivatives has been synthesized after the validation of hit compound. In addition, in vitro assays were carried out to profile the pharmacological properties of all the entities. Of all the compounds, compound 5h showed the best profile and may be used in the future study.  相似文献   

3.
Hepcidin has emerged as the central regulatory molecule of systemic iron homeostasis. Inhibition of hepcidin could be a strategy favorable to treating anemia of chronic disease (ACD). We report herein the synthesis and structure-activity relationships (SARs) of a series of benzisoxazole compounds as orally active hepcidin production inhibitors. The optimization study of multi kinase inhibitor 1 led to a potent and bioavailable hepcidin production inhibitor 38 (DS79182026), which showed serum hepcidin lowering effects in a mouse IL-6 induced acute inflammatory model.  相似文献   

4.
Therapeutic interventions with Rho kinase (ROCK) inhibitors may effectively treat several disorders such as hypertension, stroke, cancer, and glaucoma. Herein we disclose the optimization and biological evaluation of potent novel ROCK inhibitors based on substituted indole and 7-azaindole core scaffolds. Substitutions on the indole C3 position and on the indole NH and/or amide NH positions all yielded potent and selective ROCK inhibitors (25, 42, and 50). Improvement of aqueous solubility and tailoring of in vitro and in vivo DMPK properties could be achieved through these substitutions.  相似文献   

5.
A series of pyrazolo[1,5-α]pyrimidine analogs has been prepared and found to be potent and selective B-Raf inhibitors. Molecular modeling suggests they bind to the active conformation of the enzyme.  相似文献   

6.
A novel series of 2-thiocarbamoyl-2,3,4,5,6,7-hexahydro-1H-indazole and 2-substituted thiocarbamoyl-3,3a,4,5,6,7-hexahydro-2H-indazoles derivatives were synthesized and investigated for the ability to inhibit the activity of the A and B isoforms of monoamine oxidase (MAO). The target molecules were identified on the basis of satisfactory analytical and spectra data (IR, 1H NMR, 13C NMR, 2D NMR, DEPT, EI-MASS techniques and elemental analysis). Synthesized compounds showed high activity against both the MAO-A (compounds 1d, 1e, 2c, 2d, 2e) and the MAO-B (compounds 1a, 1b, 1c, 2a, 2b) isoforms. In the discussion of the results, the influence of the structure on the biological activity of the prepared compounds was delineated. It was suggested that non-substituted and N-methyl/ethyl bearing compounds (except 2c) increased the inhibitory effect and selectivity toward MAO-B. The rest of the compounds, carrying N-allyl and N-phenyl, appeared to select the MAO-A isoform. The inhibition profile was found to be competitive and reversible for all compounds. A series of experimentally tested (1a2e) compounds was docked computationally to the active site of the MAO-A and MAO-B isoenzyme. The autodock 4.01 program was employed to perform automated molecular docking. In order to see the detailed interactions of the docked poses of the model inhibitors compounds 1a, 1d, 1e and 2e were chosen because of their ability to reversibly inhibit the MAO-B and MAO-A and the availability of experimental inhibition data. The differences in the intermolecular hydrophobic and H-bonding of ligands to the active site of each MAO isoform were correlated to their biological data. Observation of the docked positions of these ligands revealed interactions with many residues previously reported to have an effect on the inhibition of the enzyme. Excellent to good correlations between the calculated and experimental Ki values were obtained. In the docking of the MAO-A complex, the trans configuration of compound 1e made various very close interactions with the residues lining the active site cavity these interactions were much better than those of the other compounds tested in this study. This tight binding observation may be responsible for the nanomolar inhibition of form of MAOA. However, it binds slightly weaker (experimental Ki = 1.23 μM) to MAO-B than to MAO-A (experimental Ki = 4.22 nM).  相似文献   

7.
AXL is a receptor tyrosine kinase that plays a key role in tumor growth and proliferation. The scientific community has validated AXL as therapeutic target in the treatment of cancers for several years now, and several AXL inhibitors have been developed but none of them are approved. In this context, we started to design new kinase inhibitors targeting AXL from the 7-azaindole scaffold well known to interact with the ATP binding site of the kinase. Focused screening and chemical diversification around 7-azaindole scaffold were developed, based on modeling studies and medicinal chemistry rational, leading to the discovery of a new family of hits with potent inhibitory activity against AXL.  相似文献   

8.
We hereby disclose the discovery of inhibitors of CaMKII (7h and 7i) that are highly potent in rat ventricular myocytes, selective against hERG and other off-target kinases, while possessing good CaMKII tissue isoform selectivity (cardiac γ/δ vs. neuronal α/β). In vitro and in vivo ADME/PK studies demonstrated the suitability of these CaMKII inhibitors for PO (7h rat F?=?73%) and IV pharmacological studies.  相似文献   

9.
The lead optimisation of the diaminopyrimidine carboxamide series of spleen tyrosine kinase inhibitors is described. The medicinal chemistry strategy was focused on optimising the human whole blood activity whilst achieving a sufficient margin over liability kinases and hERG activity. GSK143 is a potent and highly selective SYK inhibitor showing good efficacy in the rat Arthus model.  相似文献   

10.
The present study describes a novel series of ATP-competitive PKC inhibitors based on the 2,6-naphthyridine template. Example compounds potently inhibit the novel Protein Kinase C (PKC) isotypes δ, ε, η, θ (in particular PKCε/η, and display a 10–100-fold selectivity over the classical PKC isotypes. The prototype compound 11 was found to inhibit PKCθ-dependent pathways in vitro and in vivo. In vitro, a-CD3/a-CD28-induced lymphocyte proliferation could be effectively blocked in 10% rat whole blood. In mice, 11 dose-dependently inhibited Staphylococcus aureus enterotoxin B-triggered IL-2 serum levels after oral dosing.  相似文献   

11.
Herein, we report the development of highly potent HDAC inhibitors for the treatment of cancer. A series of adamantane and nor-adamantane based HDAC inhibitors were designed, synthesized and screened for the inhibitory activity of HDAC. A number of compounds exhibited GI50 of 10-100 nM in human HCT116, NCI-H460 and U251 cancer cells, in vitro. Compound 32 displays efficacy in human tumour animal xenograft model.  相似文献   

12.
Monoamine oxidase B (MAO-B) functions in the deamination of monoamines, including dopamine and norepinephrine. The search for MAO-B inhibitors increased following the discovery that the enzyme may be responsible for generating neurotoxins from various endogenous or exogenous compounds. Computational screening methods aid in the search for new inhibitors, but validation studies for specific software packages and receptors are necessary for effective application of these methods. In this study, DOCK 6.0.0 was used to dock a series of inhibitors to MAO-B. Included were studies of re-docking ligands into MAO-B crystal structures, after which a set of 30 compounds with known inhibition constants for MAO-B were docked, including 15 strong inhibitors and 15 weak inhibitors. Good agreement was observed between the top experimental inhibitors and the top ranked docking results, and key interactions between the ligands and receptor were identified.  相似文献   

13.
Hepcidin has emerged as the central regulatory molecule in systemic iron homeostasis, and its inhibition could be a favorable strategy for treating anemia of chronic disease (ACD). Here, we report the design, synthesis and structure–activity relationships (SAR) of a series of 4,6-disubstituted indazole compounds as hepcidin production inhibitors. The optimization study of multi-kinase inhibitor 1 led to the design of a potent and bioavailable hepcidin production inhibitor, 32 (DS28120313), which showed serum hepcidin-lowering effects in an interleukin-6-induced acute inflammatory mouse model.  相似文献   

14.
Abstract

A series of small molecules were designed and synthesized based on our previous virtual screening approach, which was performed to discover potent histone deacetylase inhibitors (HDACIs) with novel structures. The derived compounds were tested by Hela cell nucleus extract for enzyme inhibition assay. Tumor cell growth inhibition assays were performed using a series of tumor cell lines. Molecule 4h has the best performance among these compounds with enzyme inhibition IC50 of 0.14?μM and tumor cell growth inhibition IC50 of 1.85 (U937), 2.02 (HL60), 2.67 (K562). Docking studies showed that multiple H-bonds and hydrophobic interactions make 4h binding to the active site of HDAC. 4h has the advantage of low molecular weight, so a variety of structural modifications can be performed in our further studies.  相似文献   

15.
The synthesis and SAR studies of a novel N-aryl pyridinone class of p38 kinase inhibitors are described. Systematic structural modifications to the HTS lead, 5, led to the identification of (−)-4a as a clinical candidate for the treatment of inflammatory diseases. Additionally, the chiral synthesis and properties of (−)-4a are described.  相似文献   

16.
Aurora kinases as regulators of cell division have become promising therapeutic targets recently. Here we report novel, low molecular weight benzothiophene-3-carboxamide derivatives designed and optimized for inhibiting Aurora kinases. The most effective compound 36 inhibits Aurora kinases in vitro in the nanomolar range and diminishes HCT 116 cell viability blocking cytokinesis and inducing apoptosis. According to western blot analysis, the lead molecule inhibits Aurora kinases equipotently to VX-680 (Tozasertib) and similarly synergizes with other targeted drugs.  相似文献   

17.
Herein we describe the design of a novel series of ATP competitive B-Raf inhibitors via structure-based methods. These 3-N-methylquinazoline-4(3H)-one based inhibitors exhibit both excellent cellular potency and striking B-Raf selectivity. Optimization led to the identification of compound 16, a potent, selective and orally available agent with excellent pharmacokinetic properties and robust tumor growth inhibition in xenograft studies. Our work also demonstrates that by replacing an aryl amide with an aryl sulfonamide, a multikinase inhibitor such as AZ-628, can be converted to a selective B-Raf inhibitor, a finding that should have broad application in kinase drug discovery.  相似文献   

18.
This paper describes the improvement of cell potency in a class of allosteric Akt 1 and 2 inhibitors. Key discoveries include identifying the solvent exposed region of the molecule and appending basic amines to enhance the physiochemical properties of the molecules. Findings from the structure–activity relationships are discussed.  相似文献   

19.
Anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is considered a promising therapeutic target for human cancers. We identified novel tetracyclic derivatives as potent ALK inhibitors. Among them, compound 27 showed strong cytotoxicity against KARPAS-299 with an IC50 value of 21 nM and significant antitumor efficacy in ALK fusion-positive blood and solid cancer xenograft models in mice without body weight loss.  相似文献   

20.
A new series of 3,6-diaryl-1H-pyrazolo[3,4-b]pyridine compounds have been discovered as potent anaplastic lymphoma kinase (ALK) inhibitors. The 4-hydroxyphenyl in the 6-position of 1H-pyrazolo[3,4-b]pyridine were crucial and a fluorine atom substitution could give promising inhibitory activity. The IC50 of compound 9v against ALK was up to 1.58?nM and a binding mechanism was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号